Uncovering the Mechanism of Potassium Channel Folding and Assembly with Implications for the Molecular Basis of Cardiac Arrhythmia
揭示钾通道折叠和组装的机制对心律失常的分子基础的影响
基本信息
- 批准号:10389217
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgreementArrhythmiaBehaviorBiochemicalBiogenesisBiologicalBiological ModelsBiophysicsBrugada syndromeCardiacCardiac MyocytesCardiac healthCell physiologyCellsComplementDiseaseEngineeringEventFluorescenceFluorescence Resonance Energy TransferFutureGrainHumanHydrogenImageIn VitroIon ChannelIon TransportIonsKineticsLabelLeadLifeLightLipid BilayersLong QT SyndromeMass Spectrum AnalysisMembraneMembrane LipidsMembrane ProteinsMethodsMicroscopyMissense MutationModelingMolecularMutationNaturePathogenesisPathologicPathway interactionsPhysiologic pulsePotassium ChannelProcessProteinsPublishingRegulationResearchResolutionRoleRotationScanning Probe MicroscopyShort QT syndromeSpectrum AnalysisSpeedSyndromeTechniquesTemperatureVariantVentricular FibrillationVesicleWaterWorkbiophysical techniquesdisease-causing mutationdisulfide bondheart functionheart rhythmin vivoinnovationinsightmonomernovelphysical propertypotassium ionpreventprotein foldingreconstitutionsimulation
项目摘要
Project Summary/Abstract
Potassium channels are membrane proteins critical for the electrochemical regulation and function of cardiac cells.
Many diseases are associated with mutations in human potassium channels, including Long-QT Syndrome, Short-QT
Syndrome, Brugada Syndrome, Lev-Lenegre Syndrome, and Idiopathic Ventricular Fibrillation. The molecular basis of
these diseases remains poorly understood, and many arrhythmia-associated mutations may directly disrupt protein folding.
Therefore, it is essential to study the mechanism and biophysical determinants of potassium channel folding to understand
how these mutations may result in arrhythmia.
Preliminary work is presented here on the in vitro folding of the KcsA transmembrane pore domain, a robust model
system for human potassium channels such as hERG and Kv1.2. This work suggests that KcsA rapidly inserts as monomers
into a protein-dense region within the lipid membrane, and tetramerization kinetics are protein concentration-independent,
implying a unimolecular rate-limiting step despite the tetrameric nature of the channel. These observations raise the
following questions: What is the role of the protein-dense region in potassium channel folding? What are the structural
events in potassium channel folding, specifically regarding the rate-limiting step? Lastly, and most relevant to cardiac health,
how might missense mutations of the pore helix, such as A614V, L615V, and T623I of hERG, disrupt folding and lead to
arrhythmia? The proposed work will investigate the protein-dense region using super-resolution light and scanning-probe
microscopy in reconstituted membranes and live HL-1 cardiomyocytes to evaluate the hypothesis that the protein-dense
region functions to quickly concentrate channel monomers in the membrane and thus increase the speed and efficiency of
folding. To determine the structural events in channel folding, we will use a novel hydrogen-exchange mass spectrometry
(HXMS) technique alongside other biophysical methods to evaluate the hypothesis that folding must occur by one of two
possible mechanisms: (1) a “native assembly model” in which four natively-folded channel monomers assemble in a single,
concerted step, or (2) a “keystone model” in which the transmembrane helices of each monomer initially tetramerize into a
transmembrane bundle, and then the pore helix and selectivity filters insert into and stabilize the channel like the keystone
of an arch. Pulse-labeling and native state HXMS will probe the folding dynamics and stability, respectively, of channel
variants associated with Long-QT Syndrome to evaluate the hypothesis that pore helix missense mutations can cause disease
by preventing proper pore helix folding. These approaches will be complemented by computational coarse-grained and all-
atom techniques, including a novel “committor” analysis method to study the reactive flux between metastable folded and
unfolded potassium channel states.
The proposed work is high impact: It uses innovative and interdisciplinary techniques such as HXMS to uncover
the mechanism of potassium channel folding and its implications for cardiac arrhythmia. These insights will inform future
studies of membrane protein folding biophysics as well as the pathogenesis of heart rhythm disorders.
项目概要/摘要
钾通道是对心肌细胞的电化学调节和功能至关重要的膜蛋白。
许多疾病都与人类钾通道突变有关,包括长 QT 综合征、短 QT 综合征
综合征、Brugada 综合征、Lev-Lenegre 综合征和特发性心室颤动的分子基础。
这些疾病仍然知之甚少,许多与心律失常相关的突变可能直接破坏蛋白质折叠。
因此,有必要研究钾通道折叠的机制和生物物理决定因素,以了解钾通道折叠的机制。
这些突变如何导致心律失常。
本文介绍了 KcsA 跨膜孔域体外折叠的初步工作,这是一个稳健的模型
hERG 和 Kv1.2 等人钾通道系统这项工作表明 KcsA 作为单体快速插入。
进入脂膜内的蛋白质密集区域,四聚化动力学与蛋白质浓度无关,
尽管通道具有四聚体性质,但这意味着单分子限速步骤。
以下问题: 蛋白质密集区在钾通道折叠中的作用是什么?
钾通道折叠中的事件,特别是关于限速步骤?最后,也是与心脏健康最相关的,
孔螺旋的错义突变(例如 hERG 的 A614V、L615V 和 T623I)如何破坏折叠并导致
心律失常?拟议的工作将使用超分辨率光和扫描探针研究蛋白质密集区域
在重建膜和活 HL-1 心肌细胞中进行显微镜检查,以评估蛋白质密集的假设
该区域的作用是快速浓缩膜中的通道单体,从而提高通道单体的速度和效率
为了确定通道折叠中的结构事件,我们将使用一种新型的氢交换质谱法。
(HXMS)技术与其他生物物理方法一起评估折叠必须通过以下两种方式之一发生的假设
可能的机制:(1)“天然组装模型”,其中四个天然折叠通道单体组装在一个单一的、
协调一致的步骤,或(2)“基石模型”,其中每个单体的跨膜螺旋最初四聚成
跨膜束,然后孔螺旋和选择性过滤器像梯形石一样插入并稳定通道
脉冲标记和天然状态 HXMS 将分别探测通道的折叠动力学和稳定性。
与长 QT 综合征相关的变异,用于评估孔螺旋错义突变可导致疾病的假设
通过防止适当的孔螺旋折叠,这些方法将得到计算粗粒度和全结构的补充。
原子技术,包括一种新颖的“提交者”分析方法,用于研究亚稳态折叠和
钾通道展开状态。
拟议的工作具有很高的影响力:它使用 HXMS 等创新和跨学科技术来揭示
钾通道折叠的机制及其对心律失常的影响这些见解将为未来提供信息。
研究膜蛋白折叠生物物理学以及心律失常的发病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Vincent Molina其他文献
Andrew Vincent Molina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Vincent Molina', 18)}}的其他基金
Uncovering the Mechanism of Potassium Channel Folding and Assembly with Implications for the Molecular Basis of Cardiac Arrhythmia
揭示钾通道折叠和组装的机制对心律失常的分子基础的影响
- 批准号:
10672167 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
相似国自然基金
融合无线自组网的区块链协议研究
- 批准号:62302266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于事件逻辑理论的安全协议实施安全性形式化分析与验证
- 批准号:62362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于无源反向散射的跨协议融合与通感增强技术研究
- 批准号:62302383
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理设备与通信信道特征融合的协同内生安全模型及协议
- 批准号:62361010
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Continuous Glucose Monitoring in Dialysis Patients to Overcome Dysglycemia Trial (CONDOR TRIAL)
透析患者连续血糖监测克服血糖异常试验(CONDOR TRIAL)
- 批准号:
10587470 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Eliminating Ventricular Tachycardia: Pivotal Clinical Trial using the Durablate® Catheter
消除室性心动过速:使用 Durablate® 导管的关键临床试验
- 批准号:
10762302 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Uncovering the Mechanism of Potassium Channel Folding and Assembly with Implications for the Molecular Basis of Cardiac Arrhythmia
揭示钾通道折叠和组装的机制对心律失常的分子基础的影响
- 批准号:
10672167 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
- 批准号:
10579868 - 财政年份:2022
- 资助金额:
$ 5.18万 - 项目类别:
Cardiac 1H MRS assessment of NAD+ after Tetralogy of Fallot repair
法洛四联症修复术后 NAD 的心脏 1H MRS 评估
- 批准号:
10677856 - 财政年份:2021
- 资助金额:
$ 5.18万 - 项目类别: