Uncovering the Mechanism of Potassium Channel Folding and Assembly with Implications for the Molecular Basis of Cardiac Arrhythmia
揭示钾通道折叠和组装的机制对心律失常的分子基础的影响
基本信息
- 批准号:10672167
- 负责人:
- 金额:$ 5.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgreementArrhythmiaBehaviorBiochemicalBiogenesisBiologicalBiological ModelsBiophysicsBrugada syndromeCardiacCardiac MyocytesCardiac healthCell physiologyCellsComplementDiseaseEngineeringEventFluorescenceFluorescence Resonance Energy TransferFutureGrainHumanHydrogenImageIn VitroIon ChannelIon TransportIonsKineticsLabelLeadLifeLightLipid BilayersLong QT SyndromeMass Spectrum AnalysisMembraneMembrane LipidsMembrane ProteinsMethodsMissense MutationModelingMolecularMutationNaturePathogenesisPathologicPathway interactionsPhysiologic pulsePotassium ChannelProcessProteinsPublishingRationalizationRegulationResearchRoleScanning Probe MicroscopyShort QT syndromeSpectrum AnalysisSpeedSyndromeTechniquesTemperatureVariantVentricular FibrillationVesicleWaterWorkbiophysical techniquesdisease-causing mutationdisulfide bondheart functionheart rhythmin vivoinnovationinsightmembrane reconstitutionmonomernovelphysical propertypotassium ionpreventprotein foldingreconstitutionsimulationsuperresolution imagingsuperresolution microscopyultra high resolution
项目摘要
Project Summary/Abstract
Potassium channels are membrane proteins critical for the electrochemical regulation and function of cardiac cells.
Many diseases are associated with mutations in human potassium channels, including Long-QT Syndrome, Short-QT
Syndrome, Brugada Syndrome, Lev-Lenegre Syndrome, and Idiopathic Ventricular Fibrillation. The molecular basis of
these diseases remains poorly understood, and many arrhythmia-associated mutations may directly disrupt protein folding.
Therefore, it is essential to study the mechanism and biophysical determinants of potassium channel folding to understand
how these mutations may result in arrhythmia.
Preliminary work is presented here on the in vitro folding of the KcsA transmembrane pore domain, a robust model
system for human potassium channels such as hERG and Kv1.2. This work suggests that KcsA rapidly inserts as monomers
into a protein-dense region within the lipid membrane, and tetramerization kinetics are protein concentration-independent,
implying a unimolecular rate-limiting step despite the tetrameric nature of the channel. These observations raise the
following questions: What is the role of the protein-dense region in potassium channel folding? What are the structural
events in potassium channel folding, specifically regarding the rate-limiting step? Lastly, and most relevant to cardiac health,
how might missense mutations of the pore helix, such as A614V, L615V, and T623I of hERG, disrupt folding and lead to
arrhythmia? The proposed work will investigate the protein-dense region using super-resolution light and scanning-probe
microscopy in reconstituted membranes and live HL-1 cardiomyocytes to evaluate the hypothesis that the protein-dense
region functions to quickly concentrate channel monomers in the membrane and thus increase the speed and efficiency of
folding. To determine the structural events in channel folding, we will use a novel hydrogen-exchange mass spectrometry
(HXMS) technique alongside other biophysical methods to evaluate the hypothesis that folding must occur by one of two
possible mechanisms: (1) a “native assembly model” in which four natively-folded channel monomers assemble in a single,
concerted step, or (2) a “keystone model” in which the transmembrane helices of each monomer initially tetramerize into a
transmembrane bundle, and then the pore helix and selectivity filters insert into and stabilize the channel like the keystone
of an arch. Pulse-labeling and native state HXMS will probe the folding dynamics and stability, respectively, of channel
variants associated with Long-QT Syndrome to evaluate the hypothesis that pore helix missense mutations can cause disease
by preventing proper pore helix folding. These approaches will be complemented by computational coarse-grained and all-
atom techniques, including a novel “committor” analysis method to study the reactive flux between metastable folded and
unfolded potassium channel states.
The proposed work is high impact: It uses innovative and interdisciplinary techniques such as HXMS to uncover
the mechanism of potassium channel folding and its implications for cardiac arrhythmia. These insights will inform future
studies of membrane protein folding biophysics as well as the pathogenesis of heart rhythm disorders.
项目摘要/摘要
钾通道是对心脏细胞电化学调节和功能至关重要的膜蛋白。
许多疾病与人类钾通道中的突变有关,包括长QT综合征,短QT
综合征,Brugada综合征,LEV-氯化综合征和特发性心室纤维化。分子基础
这些疾病的理解仍然很少,许多与心律不齐相关的突变可能直接破坏蛋白质折叠。
因此,必须研究钾通道折叠的机制和生物物理确定剂以了解
这些突变如何导致心律不齐。
此处介绍了KCSA跨膜孔域的体外折叠的初步工作,这是一个可靠的模型
人类钾通道的系统,例如HERG和KV1.2。这项工作表明,KCSA随着单体的形式迅速插入
进入脂质膜内的蛋白质致密区域,四聚体动力学是蛋白质浓度独立的,
暗示着一个单分子限速的步骤,前进了通道的四聚体性质。这些观察提出了
以下问题:蛋白质致密区域在钾通道折叠中的作用是什么?结构是什么
钾通道折叠中的事件,特别是关于限速步骤的事件?最后,并且与心脏健康最相关,
孔螺旋的错义突变如何,例如A614V,L615V和T623I的HERG,破坏折叠并导致
心律不齐?拟议的工作将使用超分辨率光和扫描探针研究蛋白质致密区域
重构机制和活HL-1心肌细胞的显微镜检查,以评估蛋白质密集的假设
区域的功能可以快速浓缩膜中的通道单体,从而提高
折叠式的。为了确定通道折叠中的结构事件,我们将使用新型的氢交换质谱法
(HXMS)技术以及其他生物物理方法,以评估必须通过两种折叠发生的假设
可能的机制:(1)“天然组装模型”,其中四个折叠的通道单体在一个单一的,
一致的步骤,或(2)“基石模型”,其中每个月的跨膜螺旋最初将
跨膜束,然后孔螺旋和选择性过滤器插入并像基石一样稳定通道
拱门。脉冲标记和天然状态HXM将分别探测通道的折叠动力学和稳定性
与长QT综合征相关的变体,以评估孔螺旋螺旋错义突变的假设
通过防止正确的孔螺旋折叠。这些方法将通过计算粗粒和全能完成
原子技术,包括一种新型的“委员会”分析方法,用于研究亚稳态折叠和
展开的钾通道状态。
拟议的工作是高影响力:它使用创新和跨学科技术(例如HXMS)来揭开
钾通道折叠的机制及其对心律不齐的影响。这些见解将为未来提供信息
膜蛋白折叠生物物理学以及心律疾病的发病机理的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Vincent Molina其他文献
Andrew Vincent Molina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Vincent Molina', 18)}}的其他基金
Uncovering the Mechanism of Potassium Channel Folding and Assembly with Implications for the Molecular Basis of Cardiac Arrhythmia
揭示钾通道折叠和组装的机制对心律失常的分子基础的影响
- 批准号:
10389217 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
相似国自然基金
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中继通信协议下2-D网络化系统的递推状态估计研究
- 批准号:62373103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新型实用化量子密码协议的高安全等级理论分析
- 批准号:12374473
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
云边端架构下联邦学习下行通信压缩算法与协议研究
- 批准号:62372487
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
面向实际应用的测量设备无关类量子密钥分发协议研究
- 批准号:62371244
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
Continuous Glucose Monitoring in Dialysis Patients to Overcome Dysglycemia Trial (CONDOR TRIAL)
透析患者连续血糖监测克服血糖异常试验(CONDOR TRIAL)
- 批准号:
10587470 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Eliminating Ventricular Tachycardia: Pivotal Clinical Trial using the Durablate® Catheter
消除室性心动过速:使用 Durablate® 导管的关键临床试验
- 批准号:
10762302 - 财政年份:2023
- 资助金额:
$ 5.27万 - 项目类别:
Uncovering the Mechanism of Potassium Channel Folding and Assembly with Implications for the Molecular Basis of Cardiac Arrhythmia
揭示钾通道折叠和组装的机制对心律失常的分子基础的影响
- 批准号:
10389217 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Non-contrast 3D T1p Mapping for Myocardial Fibrosis Quantification of Pediatric Cardiomyopathy Patients
用于小儿心肌病患者心肌纤维化定量的非对比 3D T1p 映射
- 批准号:
10579868 - 财政年份:2022
- 资助金额:
$ 5.27万 - 项目类别:
Cardiac 1H MRS assessment of NAD+ after Tetralogy of Fallot repair
法洛四联症修复术后 NAD 的心脏 1H MRS 评估
- 批准号:
10677856 - 财政年份:2021
- 资助金额:
$ 5.27万 - 项目类别: