A multidimensional approach to studying the impact of caregiving on health among dementia caregivers

研究护理对痴呆症护理人员健康影响的多维方法

基本信息

  • 批准号:
    10210566
  • 负责人:
  • 金额:
    $ 44.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Family caregiving is both essential and highly respected in contemporary societies. In the U.S., very few affordable alternatives to family caregiving are available for the care of individuals living with Alzheimer’s disease and related dementia (ADRD). Protecting and promoting the health and well-being of family caregivers is crucial. The daily care and supervision of a family member living with ADRD have been associated with threats to the health and well-being of family caregivers, who often experience an overall decrease in quality of life indicators. Although more is known about the relationship of caregiving and psychosocial distress, such as depression, far less is known of the relationship between ADRD caregiving and physical health indicators and the relationship between changes in these indicators and health outcomes. Furthermore, not all caregivers have poor health effects, but we have little understanding of the profile of various health responses to caregiving. In particular, spouses of persons with ADRD are challenged by a chronic diseases and, for some, poor health outcomes; yet the health effects of caregiving vary across caregivers with some having few physical health issues and others having multiple physical health issues. A multidimensional approach inclusive of health indicators and outcomes from multiple data sources is required to fill this gap in the study of the physical health of family caregivers. The purpose of the proposed project is to characterize the health risks of ADRD spousal caregivers using self-reports of physical health and functioning, clinical health indicators, and health care utilization data represented in electronic health records (EHR). The research team will recruit spousal caregivers of individuals with ADRD, extract various health indicators from EHRs, including health care utilization, and use survey methods with a cross-sectional design to collect self-reported health and functioning as well as health behaviors. More specifically, using latent class analysis, this proposal addresses three specific aims: 1) characterize health risk profiles through a combination of objective and subjective assessments of health status among spousal caregivers; 2) Identify the degree of intensity of caregiving experience and patterns of health care utilization among spousal caregivers for the distinct health risk profiles determined in Aim 1; and 3) assess health promotion behaviors that serve as protective factors in the relationship between stressful caregiving experiences and health care utilization among subgroups of caregivers. Consistent with the purpose of the R21 funding mechanism, the expected outcomes of the project will provide a method for monitoring spousal caregiver health indicators. The study will inform the development of tailored interventions to address health risks among spousal ADRD caregivers. Findings from the study will provide the need for, and design of caregiver health risk identification algorithms that can be integrated into EHRs. The long-term goal of the proposed research is to improve recognition of caregivers’ health risks and to develop tailored interventions that reduce caregivers’ physical health burdens associated with providing continuous care for their spouses with ADRD in health care systems.
在当代社会中,家庭护理既重要又高度尊重。在美国,很少 负担得起的家庭护理替代品可用于护理阿尔茨海默氏病的个人 和相关痴呆(ADRD)。保护和促进家庭护理人员的健康和福祉至关重要。 与ADRD的家庭成员的日常护理和监督有关 家庭护理人员的健康和福祉,他们通常会经历生活质量指标的总体下降。 尽管对照料和社会心理困扰的关系有更多了解,例如抑郁症, 对ADRD护理与身体健康指标与关系之间的关系少得多 在这些指标的变化与健康结果之间。此外,并非所有护理人员的健康状况不佳 效果,但我们对各种健康反应对护理的响应的概况几乎没有理解。尤其, 患有ADRD的人的配偶受到慢性疾病的挑战,对于某些人来说,健康状况不佳。然而 护理人员的健康影响各不相同 有多个身体健康问题。包括健康指标和结果的多维方法 需要从多个数据源来填补这一空白,以研究家庭护理人员的身体健康。这 拟议项目的目的是用自我报告来表征ADRD配偶护理人员的健康风险 体育健康和功能,临床健康指标以及代表的医疗保健利用数据 电子健康记录(EHR)。研究小组将招募ADRD个人的配偶照顾者, 从EHR中提取各种健康指标,包括医疗保健利用,并使用调查方法 横断面设计,以收集自我报告的健康和功能以及健康行为。更多的 具体而言,使用潜在类分析,该提案解决了三个具体目的:1)表征健康风险 通过对配偶健康状况的客观和主题评估的结合进行概况 照顾者; 2)确定护理经验的强度程度和医疗保健利用的模式 在AIM 1中确定的独特健康风险概况的配偶护理人员中; 3)评估健康促进 在压力良好的护理经历与健康之间关系的保护因素的行为 护理人员亚组之间的护理利用。与R21资金机制的目的一致 该项目的预期结果将提供一种监视配偶护理人员健康指标的方法。这 研究将告知开发量身定制的干预措施,以应对配偶ADRD的健康风险 照顾者。该研究的发现将提供对护理人员健康风险标识的需求和设计 可以集成到EHR中的算法。拟议研究的长期目标是改善 认识护理人员的健康风险并制定量身定制的干预措施,以减少护理人员的身体 与医疗保健系统中的ADRD一起为配偶提供持续护理相关的健康伯恩斯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jinmyoung Cho其他文献

Jinmyoung Cho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
  • 批准号:
    62372118
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
NURBS参数化的自交理论与算法研究
  • 批准号:
    12301490
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分组密码算法后门的研究
  • 批准号:
    62302293
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
时序深度可加网络的算法与学习理论研究
  • 批准号:
    62306338
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 44.53万
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 44.53万
  • 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
  • 批准号:
    10816864
  • 财政年份:
    2023
  • 资助金额:
    $ 44.53万
  • 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 44.53万
  • 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 44.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了