Uniquely constrained peptides for modulating TNF receptor activity
用于调节 TNF 受体活性的独特限制肽
基本信息
- 批准号:10387498
- 负责人:
- 金额:$ 6.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-16 至 2023-02-15
- 项目状态:已结题
- 来源:
- 关键词:AffinityAgonistAnabolismAnti-Bacterial AgentsAntibodiesAntigensAreaAutoimmuneAutoimmune DiseasesBindingBinding SitesBiologicalBiological AssayBiological ProductsBiologyCD19 geneCell Surface ReceptorsCellsCharacteristicsChemicalsChemistryClinicalCommunicationComplementConsumptionCyclic PeptidesDataDevelopmentDiseaseEducational process of instructingEndothelinEnzymesExhibitsFellowshipGenerationsGeneticGenomeGenomicsGlucagon ReceptorGoalsHealthHumanHumiraIllinoisImmune TargetingImmunologic ReceptorsIn VitroIndividualInstitutesLassoLearningLibrariesLigandsMentorsMentorshipMessenger RNAMethodsModalityModificationMonoclonal AntibodiesMutagenesisOX40OralPeptide ConformationPeptide HydrolasesPeptide LibraryPeptidesPharmaceutical PreparationsPharmacologic SubstancePositioning AttributePost-Translational Protein ProcessingPropertyResearch PersonnelResearch TrainingResistanceResourcesRibosomesSafetyScientistShapesSignal TransductionSiteSolventsSpecificityStructureStructure-Activity RelationshipStudentsSurfaceT-Cell ActivationTNF geneTNFSF4 geneTherapeuticTherapeutic Monoclonal AntibodiesTimeToxic effectTrainingTumor Necrosis Factor ReceptorUniversitiesVariantWorkWork Ethicadalimumabanalogantagonistanti-PD-1anti-cancerbasecancer therapycareerdesigneffective therapygraduate studenthigh throughput screeningimprovedmembernext generationnovelpembrolizumabpeptide Irational designreceptor bindingscreeningsmall moleculesmall molecule therapeuticssuccesstargeted agentthree dimensional structuretumor necrosis factor ligand superfamily member 4undergraduate studentunnatural amino acids
项目摘要
PROJECT SUMMARY
There is a steady rise in the clinical use of biologics, particularly monoclonal antibodies (mAbs). We present
lasso peptides as a potential drug modality within the underleveraged region of chemical space between mAbs
and small molecules. Lasso peptides represent a class of ribosomally-synthesized and post-translationally
modified peptide (RiPP). Biosynthesis of lasso peptides involves a genetically encoded precursor peptide and
maturation enzymes that catalyze a macrolactam ring and configure the peptide into a unique lariat knot. Lasso
peptides recapitulate the desired properties of synthetic cyclic peptide but with key advantages: (i) lasso peptides
are uniquely constrained, highly stable globular structures with the correct shape to engage peptide-binding
targets, (ii) lasso peptides are entirely genetically encoded, straightforward generation of large and sequence-
diverse libraries, (iii) enzymatic tolerance supports modification of the entire solvent-exposed surface, non-
natural amino acids, and post-translational modifications, and (iv) the C-terminus provides a facile conjugation
site for peptide display, and high-throughput screening. Due to their unique topology, lasso peptides cannot be
chemical synthesized, thus we rely on the biosynthetic enzymes to thread the peptide. This proposal will
design a biosynthesis-informed library of lasso peptides and as a proof-of-concept, use this library to
select for lasso peptides that bind OX40. OX40 is an immunostimulatory member of the tumor necrosis factor
receptors (TNFR), studies have found that the native OX40 ligand, OX40L, and agonist antibodies can activate
OX40 to stimulate the proliferation and activation of T cells. There is a compelling need to validate immune
targets so that therapeutics can be developed, complementing the success of anti-PD1 (ie Keytruda) and anti-
TNFα (ie Humira) biologics. Our group has developed a high-throughput method with cell-free biosynthesis
(CFB) to produce lasso peptide libraries. In Aim I we will combine CFB with mRNA display to identify library
members that are successfully cyclized. Aim II will select for lasso peptides that bind OX40. We will assess
structure-activity relationships by validating the three-dimensional structure of the OX40-binding variants and
conduct binding affinity studies and in vitro signaling assays to evaluate their activity. Motifs related to OX40
binding and activity will be identified through structural and mutagenesis data. Improved understanding of
receptor binding-activity relationship will significantly inform pharmaceutical efforts. This fellowship will provide
the necessary training to prepare me for an academic career in mentoring researchers and teaching students.
My goal is to develop my abilities to become a more comprehensive scientist through improving communication
in both oral and written form, a strong collaborative work ethic, and mentorship of undergraduate and graduate
students. Working with my sponsor Douglas Mitchell, an expert in RiPPs biosynthesis, and the resources
available at the University of Illinois at Urbana-Champaign, the Department of Chemistry, and the Institute for
Genomic Biology, will provide an unrivaled chance to succeed in aims of the research and the training plan.
项目摘要
生物制剂的临床使用,尤其是单克隆抗体(mAb)的临床使用稳步上升。我们在场
拉索肽是mab之间化学空间不足区域内的潜在药物形态
和小分子。拉索·佩蒂斯(Lasso Petides
修饰肽(RIPP)。拉索辣椒的生物合成涉及遗传编码的前体胡椒和
成熟的酶,可催化大花酰胺环并将肽构成独特的幼虫结。套索
肽概括了合成循环胡椒的所需特性,但具有关键优势:(i)拉索·佩蒂德斯(Lasso Petides)
是独特的约束,高度稳定的全球结构,具有正确的形状以吸引肽结合
靶标,(ii)套索肽完全是遗传编码的,直接生成大的序列 -
(III)酶耐受支持整个溶液暴露的表面,非 -
天然氨基酸和翻译后修饰,(iv)C-末端提供了轻松的共轭
用于辣椒展示的站点和高通量筛选。由于它们独特
化学合成,因此我们依靠生物合成酶将胡椒粉丝纹。该提议将
设计套索辣椒的生物合成图书馆,作为概念证明,请使用此库
选择结合OX40的拉索肽。 OX40是肿瘤坏死因子的免疫刺激剂成员
受体(TNFR),研究发现,天然OX40配体,OX40L和激动剂抗体可以激活
OX40刺激T细胞的增殖和激活。有迫切需要验证免疫
靶标可以开发治疗,完成抗PD1(IE KEYTRUDA)和抗 - 的成功
TNFα(IE Humira)生物制剂。我们的小组开发了一种具有无细胞生物合成的高通量方法
(CFB)生产套索肽库。在目标我我将结合CFB与mRNA显示以识别库
成功自行车的成员。 AIM II将选择结合OX40的拉索肽。我们将评估
通过验证OX40结合变体的三维结构,结构活性关系
进行结合亲和力研究和体外信号传导测定以评估其活性。与OX40相关的主题
结构和诱变数据将确定结合和活性。改善了对
接收器结合活性关系将大大为药物工作提供依据。这个奖学金将提供
必要的培训,使我为心理研究人员和教学学生的学术生涯做好准备。
我的目标是通过改善沟通来发展自己成为更全面的科学家的能力
以口头和书面形式,强大的协作职业道德以及本科和毕业生的指导
学生。与我的赞助商道格拉斯·米切尔(Douglas Mitchell)合作,Ripps Biosynesis的专家和资源
可在伊利诺伊大学的Urbana-Champaign大学,化学系和研究所获得
基因组生物学,将为研究和培训计划的目标提供无与伦比的机会。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashley M. Kretsch其他文献
Ashley M. Kretsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
CD40激动剂通过调控糖代谢重塑三阴性乳腺癌免疫微环境的机制及其功能研究
- 批准号:U22A20323
- 批准年份:2022
- 资助金额:255.00 万元
- 项目类别:联合基金项目
TLR7激动剂活化MEG3/miR-185-5p/FABP4通路调节骨肉瘤巨噬细胞脂代谢促进M1极化的机制研究
- 批准号:82102866
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
- 批准号:82101697
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
TLR7激动剂活化MEG3/miR-185-5p/FABP4通路调节骨肉瘤巨噬细胞脂代谢促进M1极化的机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
β2AR激动剂与微秒电刺激对大鼠肛提肌线粒体有氧代谢酶及其多模态影像表型的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 6.76万 - 项目类别:
Different Roles for Colony Stimulating Factor 1 Isoforms in Anabolic Therapy for Low Bone Mass
集落刺激因子 1 同工型在低骨量合成代谢治疗中的不同作用
- 批准号:
10585240 - 财政年份:2023
- 资助金额:
$ 6.76万 - 项目类别:
T cell recognition of the MR1 presented microbial metabolome
T 细胞识别 MR1 呈递的微生物代谢组
- 批准号:
10442759 - 财政年份:2019
- 资助金额:
$ 6.76万 - 项目类别:
T cell recognition of the MR1 presented microbial metabolome
T 细胞识别 MR1 呈递的微生物代谢组
- 批准号:
9975096 - 财政年份:2019
- 资助金额:
$ 6.76万 - 项目类别:
Structural Mechanisms of parathyroid hormone receptor signaling through Gs
Gs 甲状旁腺激素受体信号传导的结构机制
- 批准号:
9899083 - 财政年份:2019
- 资助金额:
$ 6.76万 - 项目类别: