Mechanisms of Skeletal Morphogenesis During Digit Tip Regeneration

指尖再生过程中骨骼形态发生的机制

基本信息

  • 批准号:
    10371285
  • 负责人:
  • 金额:
    $ 12.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Summary My long-term career goal is to become a successful independent investigator in the field of musculoskeletal regenerative medicine, developing therapeutics to promote the regeneration of complex tissues after injury or disease. The objective of this proposal is to help me transition to independence by providing me with critical scientific skills to investigate the cellular and molecular mechanisms of murine digit tip regeneration versus fibrotic scarring. To reach this objective, a thorough training plan has been established, including research aims and tailored training activities. The proposed research project will seek to develop a novel mouse model and an induced pluripotent stem cell (iPSC) in vitro culture system in order to dissect the functional role of regulatory genes involved in embryonic limb development and morphogenesis, including Hox genes. The central hypothesis of the proposal is that HoxA cluster genes, and specifically Hoxa13, are required during digit regeneration to coordinate osteogenic differentiation, outgrowth, and patterning via Eph/ephrin and bone morphogenetic protein (BMP) signaling. We will investigate this hypothesis by conditionally deleting HoxA cluster genes from osteoblast lineage cells in transgenic mice in Aim 1 and by modulating Hoxa13 gene expression in iPSCs in vitro using a lentiviral-mediated approach in Aims 2 and 3a. Finally, we will evaluate the therapeutic potential of Hoxa13-expressing cells delivered to the wound site of non-regenerative digits in Aim 3b. The project outlined in this application combines basic science with a clinically relevant in vivo platform and cutting-edge transcriptomic and bioinformatic technologies to query the gene regulatory networks and signaling pathways that lead to regeneration versus scarring after musculoskeletal injury. This proposal also includes a comprehensive series of educational activities that will prepare me for my independent research faculty position. The world-class institutional environment at Washington University in St. Louis provides a multitude of resources to ensure the successful completion of the proposed work, as well as ample opportunities for career development. Finally, the assembled Scientific and Career Advisory Committee, along with new mentoring relationships that I am fostering in the developmental and regenerative biology communities, will monitor research progress, provide constructive feedback, and advocate for my professional development as I begin my independent research career.
项目摘要 我的长期职业目标是成为一名成功的独立调查员 肌肉骨骼再生医学,开发疗法以促进复杂组织的再生 受伤或疾病后。该提议的目的是通过提供我的方式来帮助我过渡到独立 具有关键的科学技能,研究鼠数字尖端再生的细胞和分子机制 相对于纤维化疤痕。为了实现这一目标,已经建立了彻底的培训计划,包括研究 目标和量身定制的培训活动。拟议的研究项目将寻求开发新型的鼠标模型 并在体外培养系统中引起多能干细胞(IPSC),以剖析 参与胚胎肢体发育和形态发生的调节基因,包括HOX基因。中央 该提案的假设是数字期间需要Hoxa簇基因,尤其是Hoxa13 再生以协调成骨的分化,产物和通过EPH/Ephrin和骨骼的图案 形态发生蛋白(BMP)信号传导。我们将通过有条件删除Hoxa群集来研究这一假设 来自AIM 1的转基因小鼠中成骨细胞细胞的基因,并通过调节Hoxa13基因表达 IPSC在AIM 2和3A中使用慢病毒介导的方法进行体外体外。最后,我们将评估治疗性 在AIM 3B中,表达HOXA13的细胞的潜力传递到非再生数字的伤口部位。项目 该应用程序中概述了基础科学与临床相关的体内平台和尖端 转录组和生物信息学技术以查询基因调节网络和信号通路 导致肌肉骨骼损伤后的再生与疤痕。该建议还包括一个全面 一系列教育活动,这将使我为我的独立研究教师职位做好准备。世界一流 圣路易斯华盛顿大学的机构环境提供了大量资源,以确保 成功完成了拟议的工作,以及足够的职业发展机会。最后, 组装了科学和职业咨询委员会,以及我正在建立的新指导关系 在发展和再生生物学社区中,将监控研究进度,提供建设性 反馈,并在我开始独立研究职业时提倡我的专业发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feini Qu其他文献

Feini Qu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feini Qu', 18)}}的其他基金

Mechanisms of Skeletal Morphogenesis During Digit Tip Regeneration
指尖再生过程中骨骼形态发生的机制
  • 批准号:
    10655300
  • 财政年份:
    2022
  • 资助金额:
    $ 12.85万
  • 项目类别:
Cellular and Molecular Mechanisms of Murine Digit Regeneration
小鼠手指再生的细胞和分子机制
  • 批准号:
    9889795
  • 财政年份:
    2019
  • 资助金额:
    $ 12.85万
  • 项目类别:

相似海外基金

Radiation Oncology at the Interface of Pediatric Cancer Biology and Data Science
儿科癌症生物学和数据科学交叉领域的放射肿瘤学
  • 批准号:
    10712290
  • 财政年份:
    2023
  • 资助金额:
    $ 12.85万
  • 项目类别:
Support Mentoring of Early Career Clinical Researchers from Diverse Backgrounds
支持来自不同背景的早期职业临床研究人员的指导
  • 批准号:
    10797859
  • 财政年份:
    2023
  • 资助金额:
    $ 12.85万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10712291
  • 财政年份:
    2023
  • 资助金额:
    $ 12.85万
  • 项目类别:
Curing Through Collaboration: Utilizing Cooperative Groups in the Fight Against Chronic Lymphocytic Leukemia and B-cell Lymphomas
通过合作进行治愈:利用合作团体对抗慢性淋巴细胞白血病和 B 细胞淋巴瘤
  • 批准号:
    10566833
  • 财政年份:
    2023
  • 资助金额:
    $ 12.85万
  • 项目类别:
Structure-based Antiviral Design against HTLV-1 Protease
基于结构的 HTLV-1 蛋白酶抗病毒设计
  • 批准号:
    10750889
  • 财政年份:
    2023
  • 资助金额:
    $ 12.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了