Developing Physics-Based Virtual Simulation Technology for Natural Orifice Transl
开发基于物理的自然孔口传输虚拟仿真技术
基本信息
- 批准号:8470644
- 负责人:
- 金额:$ 62.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-06 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAdhesionsAirAnatomic ModelsAnimal ModelAnimalsAnusAppendectomyBiomechanicsBody SurfaceBody cavitiesCarbon DioxideCicatrixClinicalColonComputer SimulationComputersCosmeticsDataData SetDentalDevelopmentDevicesEffectivenessEndoscopesEngineeringEnsureEnvironmentEsophagusExcisionExtravasationFamily suidaeFeedbackFundingGasesGastroenterologyGastrointestinal EndoscopyGastrointestinal tract structureGoalsGreater sac of peritoneumGynecologic Surgical ProceduresHealedHemoperitoneumHerniaHourHumanImageInfectionInfection preventionInformation SciencesInformation TechnologyInsufflationIntestinesIntra-abdominalLaparoscopic Surgical ProceduresLeadLength of StayMedicalMentorsModelingMorbidity - disease rateNational Institute of Biomedical Imaging and BioengineeringOperating RoomsOperative Surgical ProceduresOral cavityOrganOrgan ModelOutcomePainPatientsPhysicsPhysiologicalPneumoperitoneumPostoperative PainPostoperative PeriodProceduresProcessPumpPuncture procedureRecoveryRectumRegimenResearchResearch ActivityResearch Project GrantsResolutionResourcesRiskSimulateSiteSpace PerceptionStomachStressSurgeonSurgical complicationSurgical incisionsSystemTechniquesTechnologyTestingTimeTissuesTouch sensationTrainingTranslatingTreatment CostUnited StatesUnited States National Institutes of HealthVaginaValidationVisceraVisible Human ProjectVisualWorkWound Infectionbasebody cavityclinical practiceexperienceflexibilitygastrointestinalgastrotomyhapticshealingimprovedinstrumentationminimally invasivemultidisciplinarynew technologynoveloperationpressureprototypepublic health relevanceresearch studysimulationsoft tissuetoolvirtualvirtual reality
项目摘要
DESCRIPTION (provided by applicant): Developing Physics-Based Virtual Simulation Technology for Natural Orifice Translumenal Endoscopic Surgery (NOTES) NOTES is an emerging revolutionary surgical paradigm, being viewed as a natural successor of laparoscopic surgery, where internal organs are accessed by perforating the viscera (stomach, colon or vagina) using a flexible endoscope inserted through natural orifices such as the mouth, anus or vagina; without making any incisions on the surface of the body. Such "scarless" procedures would not only lead to better cosmetic results but also enhance the prospects of decreased wound infections and incisional hernia, as well as operative stress, postoperative immobility and pain. However, animal studies have shown serious interoperative difficulties as well as post operative complications. Hence, the current enthusiasm regarding NOTES should not overtake a cautioned approach to the implementation of this new technique. Before NOTES can be safely introduced to humans in the United States several fundamental barriers to its development must be overcome including (1) discovering optimal techniques for accessing the intra-abdominal organs; (2) ensuring that the pressure inside the abdomen does not rise to dangerous levels or there is no leakage into the GI tract when gas (air or CO2) is pumped into the body cavity (this is known as pneumoperitoneum and is achieved through a process known as insufflation) through the endoscope to increase work volume; (3) maintaining spatial orientation inside the body cavity; (4) achieving near perfect closure of the puncture site in the gastric wall (gastrotomy closure); (5) prevention of infection; (6) control of intra-peritoneal hemorrhage; (7) developing novel instrumentation and (8) novel training regimens. The current paradigm is based on testing porcine models which is time consuming, resource intensive and severely delimits the number of possible alternatives that can be tested. To vastly accelerate the development of NOTES procedures and devices, we propose to develop the first virtual reality (VR)-based NOTES simulator with both visual and haptic (touch) feedback. While VR-based simulators exist for both laparoscopic surgery and gastrointestinal endoscopy, none exists for NOTES. Existing technology is inadequate for NOTES simulation and major technological hurdles - not encountered in GI endoscopy or laparoscopic surgery - must be overcome. The most significant of these hurdles include (1) realistic modeling of multilayered hollow organs (e.g., esophagus, stomach, intestines, rectum and vagina) based on physical experiments; (2) simulation of the interaction of flexible surgical tools with soft tissues; (3) physics-based techniques of ensuring the effectiveness of pneumoperitoneum and the integrity of gastrotomy closure and (4) developing realistic interfaces. The aim of the present proposal is to overcome these preliminary challenges and develop the first VR-NOTES simulator which is firmly based on physical experiments and surgical experience and is responsive to physiological consequence of surgical complications. The simulator must undergo extensive validation before it can be used in a clinical setting. A multidisciplinary team with collective expertise in physics-based medical simulation, biomechanical organ modeling, human factors engineering, interventional gastroenterology, laparoscopic and gynecologic surgery has been assembled to achieve the following specific aims in a 4-year R01 research project: SA1) To combine the latest 3D anatomical models with physics-based tissue deformation models to simulate the interaction of flexible surgical tools with detailed deformable organ models that occur in NOTES procedures; SA2) To integrate the computational models and experimental data generated in SA1 and develop the prototype of a virtual NOTES appendectomy (appendix removal) simulator which incorporates physiological consequence of surgical complications and allows comparison of alternate surgical procedures and devices; and SA3) To establish the validity of the computational models and the VR-NOTES simulator developed in SA2.
描述(由申请人提供):为自然孔腔内窥镜手术开发基于物理的虚拟模拟技术(NOTES)NOTES 是一种新兴的革命性手术范例,被视为腹腔镜手术的自然继承者,腹腔镜手术通过穿孔内脏来进入内脏器官(胃、结肠或阴道)使用通过口腔、肛门或阴道等自然孔道插入的柔性内窥镜;无需在身体表面做任何切口。这种“无疤痕”手术不仅可以带来更好的美容效果,还可以减少伤口感染和切口疝,以及手术压力、术后不活动和疼痛。然而,动物研究表明存在严重的术中困难以及术后并发症。因此,当前对NOTES 的热情不应超过对这项新技术实施的谨慎态度。在NOTES能够安全地引入美国人类之前,必须克服其发展的几个基本障碍,包括(1)发现进入腹腔内器官的最佳技术; (2) 当气体(空气或二氧化碳)被泵入体腔时(这称为气腹,通过一个过程实现),确保腹部内的压力不会上升到危险水平或不会泄漏到胃肠道中称为吹气)通过内窥镜增加工作量; (3)保持体腔内的空间定向; (4)实现胃壁穿刺部位近乎完美的闭合(胃切开术闭合); (5)预防感染; (6)控制腹腔内出血; (7) 开发新型仪器和 (8) 新型训练方案。 当前的范例基于测试猪模型,这是耗时的、资源密集的并且严重限制了可以测试的可能替代方案的数量。为了大大加速NOTES程序和设备的开发,我们建议开发第一个基于虚拟现实(VR)的NOTES模拟器,具有视觉和触觉(触摸)反馈。虽然腹腔镜手术和胃肠内窥镜检查都有基于 VR 的模拟器,但 NOTES 却没有。现有技术不足以进行 NOTES 模拟,必须克服胃肠道内窥镜检查或腹腔镜手术中未遇到的主要技术障碍。这些障碍中最重要的包括(1)基于物理实验的多层中空器官(例如食道、胃、肠、直肠和阴道)的真实建模; (2)模拟柔性手术工具与软组织的相互作用; (3) 基于物理的技术,确保气腹的有效性和胃切开术闭合的完整性;(4) 开发真实的界面。本提案的目的是克服这些初步挑战,开发第一个 VR-NOTES 模拟器,该模拟器牢固地基于物理实验和手术经验,并对手术并发症的生理后果做出反应。模拟器必须经过广泛的验证才能用于临床环境。 一个多学科团队在基于物理的医学模拟、生物力学器官建模、人因工程、介入胃肠病学、腹腔镜和妇科手术方面拥有集体专业知识,已组建起来,以在为期 4 年的 R01 研究项目中实现以下具体目标: SA1) 结合最新的 3D 解剖模型和基于物理的组织变形模型,用于模拟在 NOTES 手术中发生的灵活手术工具与详细可变形器官模型的相互作用; SA2) 整合SA1中生成的计算模型和实验数据,开发虚拟NOTES阑尾切除术(阑尾切除)模拟器的原型,该模拟器结合了手术并发症的生理后果,并允许比较替代手术程序和设备; SA3) 建立 SA2 中开发的计算模型和 VR-NOTES 模拟器的有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CAROLINE GL CAO其他文献
CAROLINE GL CAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CAROLINE GL CAO', 18)}}的其他基金
Development and Validation of a Virtual Electrosurgical Skill Trainer (VEST)
虚拟电外科技能训练器 (VEST) 的开发和验证
- 批准号:
9314976 - 财政年份:2016
- 资助金额:
$ 62.44万 - 项目类别:
Development and Validation of a Virtual Electrosurgical Skill Trainer (VEST)
虚拟电外科技能训练器 (VEST) 的开发和验证
- 批准号:
8921197 - 财政年份:2012
- 资助金额:
$ 62.44万 - 项目类别:
Development and Validation of a Virtual Electrosurgical Skill Trainer (VEST)
虚拟电外科技能训练器 (VEST) 的开发和验证
- 批准号:
8726762 - 财政年份:2012
- 资助金额:
$ 62.44万 - 项目类别:
Development and Validation of a Virtual Electrosurgical Skill Trainer (VEST)
虚拟电外科技能训练器 (VEST) 的开发和验证
- 批准号:
8538975 - 财政年份:2012
- 资助金额:
$ 62.44万 - 项目类别:
Development and Validation of a Virtual Electrosurgical Skill Trainer (VEST)
虚拟电外科技能训练器 (VEST) 的开发和验证
- 批准号:
8370225 - 财政年份:2012
- 资助金额:
$ 62.44万 - 项目类别:
Developing Physics-Based Virtual Simulation Technology for Natural Orifice Transl
开发基于物理的自然孔口传输虚拟仿真技术
- 批准号:
8107147 - 财政年份:2011
- 资助金额:
$ 62.44万 - 项目类别:
Developing Physics-Based Virtual Simulation Technology for Natural Orifice Transl
开发基于物理的自然孔口传输虚拟仿真技术
- 批准号:
8261924 - 财政年份:2011
- 资助金额:
$ 62.44万 - 项目类别:
Developing Physics-Based Virtual Simulation Technology for Natural Orifice Transl
开发基于物理的自然孔口传输虚拟仿真技术
- 批准号:
8665320 - 财政年份:2011
- 资助金额:
$ 62.44万 - 项目类别:
Developing a Virtual Basic Laparoscopic Skill Trainer (VBLaST)
开发虚拟基础腹腔镜技能训练器 (VBLaST)
- 批准号:
8274880 - 财政年份:2010
- 资助金额:
$ 62.44万 - 项目类别:
Developing a Virtual Basic Laparoscopic Skill Trainer (VBLaST)
开发虚拟基础腹腔镜技能训练器 (VBLaST)
- 批准号:
8470093 - 财政年份:2010
- 资助金额:
$ 62.44万 - 项目类别:
相似国自然基金
宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
- 批准号:82371641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
- 批准号:82360298
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
- 批准号:82371636
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
相似海外基金
Development of optoelectronically active nerve adhesive for accelerating peripheral nerve repair
开发用于加速周围神经修复的光电活性神经粘合剂
- 批准号:
10811395 - 财政年份:2023
- 资助金额:
$ 62.44万 - 项目类别:
New Bioreactor System to Test the Mechanisms that Underlay Catheter Malfunction Under Hydrocephalic Conditions.
新型生物反应器系统可测试脑积水条件下导管故障的机制。
- 批准号:
10667087 - 财政年份:2023
- 资助金额:
$ 62.44万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10463117 - 财政年份:2022
- 资助金额:
$ 62.44万 - 项目类别: