Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
基本信息
- 批准号:10361416
- 负责人:
- 金额:$ 81.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Advanced Malignant NeoplasmAnti-Inflammatory AgentsAreaArtificial IntelligenceBehavior TherapyBiologicalBiophysicsBiopsyCancerousCellsClassificationClinicalComplexComputer ModelsDataDecision MakingDiagnosticEdemaEnvironmentEvolutionFutureGlioblastomaGliomaGoalsHeterogeneityImageImage EnhancementImmuneImmune systemImmunologicsImmunologyImmunotherapyIn SituInflammationInflammatoryLinkLocationMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of brainMapsMeasuresMicrogliaModelingMolecularOncologyOperative Surgical ProceduresOutcomePathway interactionsPatient-Focused OutcomesPatientsPhenotypePhysicsPopulationPredispositionPrognosisRecurrenceResourcesRoleScientistSex DifferencesSignal TransductionSpatial DistributionSpecimenSystemTestingTherapeuticTherapeutic InterventionTimeTumor-infiltrating immune cellsVariantanticancer researchbasebiological heterogeneitycancer carecell typeclinical decision-makingclinical imagingcohortcytotoxiceffective therapyin vivoinsightmachine learning modelmacrophagemolecular phenotypeneoplastic cellnovel strategiesoutcome predictionpersonalized approachpredictive modelingquantitative imagingradiomicsresponseserial imagingsexspatiotemporalstandard of caresynergismtooltumortumor behaviortumor growthtumor microenvironmenttumor progressiontumor-immune system interactions
项目摘要
ABSTRACT
The use of immunotherapy to treat cancer continues to generate hope and excitement among those involved in
cancer care and research. However, our inability to explain why some patients do not respond to
immunotherapy, combined with our inability to identify early response or predict the responders, poses serious
challenges in this field. Currently, biopsies serve as the most informative way to assess the immunological
activity within a cancerous area, but we are spatially and temporally limited in the number of biopsies we can
obtain from patients, especially in cases of brain cancer. Clear evidence of tumor-immune environment
heterogeneity across patients suggests that we will have to use an individualized approach in order to
accurately assess patient tumor’s specific immune environment and the evolution of these complex systems.
We propose to use computational modeling and artificial intelligence to bridge the spatial scales of the cellular
content comprising each MRI at the voxel level, but also to bridge the temporal scales. We will focus on the
most cellular immune population in glioblastoma, microglia/macrophages, that constitute as much as 50% of
the cellular content of tumor specimens. By fusing MRI with the biological heterogeneity found in image-
localized biopsies through such radiomics approaches provides an opportunity to individualize our
understanding of the the tumor-immune environment, broadly benefiting scientists across the fields of oncology
and immunology. In addition to providing a deeper understanding of the tumor at every imaging time point, the
radiomics maps can also be used to parameterize dynamic mechanistic models of tumor growth to allow for
prediction of future dynamics. These spatio-temporal models allow us to test hypotheses about causal
relationships between different cell types and microenvironmental factors, as well as to verify whether the
radiomics maps provide early dynamic insights into tumor response that can impact clinical decision making.
抽象的
使用免疫疗法治疗癌症继续给相关人员带来希望和兴奋
然而,我们无法解释为什么有些患者对癌症治疗没有反应。
免疫疗法,加上我们无法识别早期反应或预测反应者,造成了严重的后果
目前,活检是评估免疫学信息最丰富的方法。
癌区域内的活动,但我们可以进行的活检数量在空间和时间上都受到限制
从患者身上获得的,尤其是脑癌病例中的肿瘤免疫环境的明确证据。
患者之间的异质性表明,我们必须使用个体化的方法来
准确评估患者肿瘤的特定免疫环境和这些复杂系统的进化。
我们建议使用计算建模和人工智能来弥合细胞的空间尺度
内容包括体素水平上的每个 MRI,但也为了弥合时间尺度,我们将重点关注
胶质母细胞瘤中大多数细胞免疫群体是小胶质细胞/巨噬细胞,占胶质母细胞瘤细胞免疫群体的 50%
通过将 MRI 与图像中发现的生物异质性相融合
通过这种放射组学方法进行局部活检提供了个体化我们的机会
对肿瘤免疫环境的了解,使肿瘤学领域的科学家广泛受益
和免疫学 除了在每个成像时间点提供对肿瘤的更深入的了解之外,
放射组学图也可用于参数化肿瘤生长的动态机制模型,以允许
这些时空模型使我们能够检验有关因果关系的假设。
不同细胞类型和微环境因素之间的关系,以及验证是否
放射组学图提供了对肿瘤反应的早期动态洞察,可以影响临床决策。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Canoll其他文献
Peter Canoll的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Canoll', 18)}}的其他基金
Mathematical Oncology Systems Analysis Imaging Center (MOSAIC)
数学肿瘤学系统分析成像中心 (MOSAIC)
- 批准号:
10729420 - 财政年份:2023
- 资助金额:
$ 81.49万 - 项目类别:
Single Nucleus Transcriptional Profiling of Intractable Focal Epilepsy
难治性局灶性癫痫的单核转录谱
- 批准号:
10544524 - 财政年份:2022
- 资助金额:
$ 81.49万 - 项目类别:
Single Nucleus Transcriptional Profiling of Intractable Focal Epilepsy
难治性局灶性癫痫的单核转录谱
- 批准号:
10373149 - 财政年份:2022
- 资助金额:
$ 81.49万 - 项目类别:
Langworthy Diversity Supplement: Image-based models of tumor-immune dynamics in glioblastoma
Langworthy Diversity Supplement:基于图像的胶质母细胞瘤肿瘤免疫动力学模型
- 批准号:
10381307 - 财政年份:2021
- 资助金额:
$ 81.49万 - 项目类别:
Diversity Supplement Ifediora: Image-based models of tumor-immune dynamics in glioblastoma
多样性补充 Ifediora:胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10746512 - 财政年份:2021
- 资助金额:
$ 81.49万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10737767 - 财政年份:2021
- 资助金额:
$ 81.49万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10580715 - 财政年份:2021
- 资助金额:
$ 81.49万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10524208 - 财政年份:2021
- 资助金额:
$ 81.49万 - 项目类别:
相似国自然基金
靶向HDAC3/SIAH2蛋白复合物的HDAC3降解剂的作用机制、结构改造及非酶活功能介导的抗炎活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卡萨烷选择性调控糖皮质激素受体GR功能的抗炎作用机制与新颖调控剂的设计与发现
- 批准号:82273824
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
ZAP-70选择性共价抑制剂及降解剂的设计合成和抗炎活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于片段的P2Y14受体拮抗剂的设计、合成和抗炎活性研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
两种民族药用植物中黄酮类ILCreg诱导剂的发现及其抗炎性肠病机制探究
- 批准号:81960777
- 批准年份:2019
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Antibody-guided localized activation of bioorthogonal protodrugs via click chemistry
通过点击化学抗体引导生物正交原药的局部激活
- 批准号:
10760737 - 财政年份:2023
- 资助金额:
$ 81.49万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10737767 - 财政年份:2021
- 资助金额:
$ 81.49万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10580715 - 财政年份:2021
- 资助金额:
$ 81.49万 - 项目类别:
Image-based models of tumor-immune dynamics in glioblastoma
胶质母细胞瘤肿瘤免疫动力学的基于图像的模型
- 批准号:
10524208 - 财政年份:2021
- 资助金额:
$ 81.49万 - 项目类别:
Polypharmacy, Potentially Inappropriate Medications, and Adverse Outcomes in Older Adults with Advanced Cancer Receiving Chemotherapy
接受化疗的晚期癌症老年人的多重用药、可能不适当的药物和不良后果
- 批准号:
10263984 - 财政年份:2020
- 资助金额:
$ 81.49万 - 项目类别: