Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
基本信息
- 批准号:10356905
- 负责人:
- 金额:$ 55.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AGTR2 geneAcute Lung InjuryAffectAlveolarAnimal ModelApoptosisAwardAwarenessBiochemical MarkersBiological AssayBudgetsCell membraneCellsClinicalClinical ResearchCo-ImmunoprecipitationsComplexDataDevelopmentDown-RegulationDrug DesignEndothelial CellsEndotheliumEnvironmentEpithelialEpithelial CellsExposure toFluorometryFunctional disorderGenetic EnhancementHealthcareHistologicHospitalizationHumanHyperoxiaIn VitroIndividualInflammationInflammation MediatorsInflammatory ResponseInterventionKnockout MiceLabelLengthLifeLungMass Spectrum AnalysisMeasuresMediatingMembrane PotentialsMolecular TargetMorbidity - disease rateMorphologyMusOxygenOxygen Therapy CarePathway interactionsPatient-Focused OutcomesPatientsPharmacologyPhysiologicalPotassium ChannelProcessPulmonary InflammationRoleSECTM1 geneSavingsSignal PathwaySignal TransductionStructureSupplementationTestingTherapeuticTranslatingacute hypoxemic respiratory failurealveolar epitheliumbiophysical propertiescell typeexperimental studyhyperoxia induced lung injuryimprovedin vivo Modelinnovationlung injurymortalitymouse modelnovelnovel strategiesoverexpressionoxygen toxicitypatch clamppotassium channel protein TREK-1preventprotective effecttargeted treatmentvoltage
项目摘要
PROJECT SUMMARY:
Significance: Oxygen supplementation (hyperoxia; HO) is the most frequently applied therapy for
hospitalized patients and the cornerstone of treatment for acute hypoxic respiratory failure (ARF). It is well known,
however, that HO exposure can not only promote existing lung injury but also initiate inflammation and barrier
dysfunction in otherwise healthy lungs. The inflammatory response evoked by HO is particularly damaging to
alveolar epithelial and endothelial cells causing cellular apoptosis and alveolar barrier disruption. Clinically, the
recognition of HO-induced acute lung injury (HALI) led to an increased awareness of oxygen toxicity and
efforts to minimize oxygen exposure for ARF patients. Although clinical and experimental studies have identified
several potential mechanisms underlying HALI, currently no therapies exist to prevent or counteract HALI, and
the length of hospitalization of ARF patients has remained unchanged for two decades. These findings
underscore the urgent need for identifying molecular targets to facilitate rational drug design against HALI.
In the search for such new targets, we discovered TREK-1 potassium channels as potential new key
regulators of HALI. Our preliminary data support the novel hypothesis that HO downregulates epithelial and
endothelial TREK-1 channels, which results in cell membrane depolarization, subsequent opening of voltage-
gated Ca2+ channels, and as a consequence increased inflammatory mediator secretion, cell apoptosis and
alveolar barrier dysfunction. Furthermore, we propose that enhancement of TREK-1 activity can counteract this
injurious cascade.
We will test this hypothesis in three Specific Aims: In Aim1 we will identify the cell type(-s) predominantly
affected by HO-induced TREK-1 downregulation, using epithelial and endothelial cell-specific TREK-1 KO mouse
models and primary cells isolated from these mice. In Aim 2 we will determine the protective effects of TREK-1
enhancement against HALI using novel TREK-1 activating compounds, new cell type-specific TREK-1
overexpressing mouse models, and primary epithelial and endothelial cells isolated from these mice. In Aim 3
we will dissect the structural composition and biophysical properties of epithelial and endothelial TREK-1
channels at baseline and under HO conditions, and propose a novel signaling mechanism by which TREK-1
channels could regulate inflammation and barrier dysfunction during HALI.
This study will impact the field of acute lung injury by establishing aberrant epithelial and endothelial TREK-
1 signaling in the lung as a previously unrecognized pathway in HALI, and TREK-1 activation as the first targeted
therapeutic approach against HALI.
项目摘要:
意义:补充氧(高氧; HO)是最常应用的治疗
住院的患者和急性缺氧呼吸衰竭(ARF)治疗的基石。众所周知,
但是,HO暴露不仅可以促进现有的肺部损伤,还可以引起炎症和障碍
其他健康肺部功能障碍。 HO引起的炎症反应特别损害了
肺泡上皮和内皮细胞,导致细胞凋亡和肺泡屏障破坏。临床上,
识别HO诱导的急性肺损伤(HALI)导致对氧毒性的认识提高
努力最大程度地减少ARF患者的氧气暴露。尽管临床和实验研究已经确定
哈利的潜在机制,目前尚无预防或抵消哈利的疗法,以及
ARF患者的住院时间一直保持不变二十年。这些发现
强调迫切需要识别分子靶标,以促进针对HALI的合理药物设计。
在寻找这种新目标时,我们发现了Trek-1钾通道是潜在的新钥匙
哈利的监管机构。我们的初步数据支持了新的假设,即HO下皮和
内皮TREK-1通道导致细胞膜去极化,随后打开电压 -
门控Ca2+通道,因此增加了炎症介质的分泌,细胞凋亡和
肺泡屏障功能障碍。此外,我们建议提高跋涉1活动可以抵消这一点
有害的级联。
我们将以三个特定的目的检验这一假设:在AIM1中,我们将主要识别单元格类型(-s)
受HO诱导的Trek-1下调的影响,使用上皮和内皮细胞特异性Trek-1 KO小鼠的影响
与这些小鼠分离的模型和原代细胞。在AIM 2中,我们将确定Trek-1的保护作用
使用新型TREK-1激活化合物,新的细胞类型特异性TREK-1,对HAI的增强
从这些小鼠中分离出的过表达小鼠模型,以及原发性上皮细胞和内皮细胞。在目标3中
我们将剖析上皮和内皮跋涉1的结构组成和生物物理特性
在基线和HO条件下的通道,并提出了一种新的信号传导机制
通道可以调节哈利期间的炎症和屏障功能障碍。
这项研究将通过建立异常上皮和内皮跋涉 -
1在肺中作为先前未识别的途径在HALI中的信号传导,而Trek-1激活为第一个靶向
针对哈利的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Schwingshackl其他文献
Andreas Schwingshackl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Schwingshackl', 18)}}的其他基金
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
- 批准号:
10586093 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别:
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
- 批准号:
10112957 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别:
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
- 批准号:
9886150 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别:
The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.
2 孔域钾通道在急性肺损伤中的作用。
- 批准号:
8632613 - 财政年份:2014
- 资助金额:
$ 55.07万 - 项目类别:
The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.
2 孔域钾通道在急性肺损伤中的作用。
- 批准号:
8984909 - 财政年份:2014
- 资助金额:
$ 55.07万 - 项目类别:
The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.
2 孔域钾通道在急性肺损伤中的作用。
- 批准号:
9272423 - 财政年份:2014
- 资助金额:
$ 55.07万 - 项目类别:
相似国自然基金
Tim-3调控肺泡巨噬细胞极化和功能对脓毒症急性肺损伤发生发展的影响及其机制研究
- 批准号:82060021
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
颗粒蛋白前体调控巨噬细胞胞葬功能对急性肺损伤炎症消退的影响及机制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
HVEM调控肺泡巨噬细胞极化影响脓毒症急性肺损伤转归的作用和机制
- 批准号:81900077
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
肠-淋巴-肺轴通过TLR4信号通路对SAP-ALI中性粒细胞活化的影响机制
- 批准号:81770631
- 批准年份:2017
- 资助金额:56.0 万元
- 项目类别:面上项目
吸气和呼气肌肉活动对ARDS机械通气影响及其机制的实验研究
- 批准号:81660018
- 批准年份:2016
- 资助金额:23.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Novel Orally Available CBP/Beta-Catenin Antagonists to Treat Idiopathic Pulmonary Fibrosis
新型口服 CBP/β-连环蛋白拮抗剂治疗特发性肺纤维化
- 批准号:
10480363 - 财政年份:2022
- 资助金额:
$ 55.07万 - 项目类别:
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
- 批准号:
10586093 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别:
Defining the molecular determinants of mesenchymal lineage allocation in lung development and disease
定义肺发育和疾病中间充质谱系分配的分子决定因素
- 批准号:
10210771 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别:
Defining the molecular determinants of mesenchymal lineage allocation in lung development and disease
定义肺发育和疾病中间充质谱系分配的分子决定因素
- 批准号:
10473820 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别:
Defining the molecular determinants of mesenchymal lineage allocation in lung development and disease
定义肺发育和疾病中间充质谱系分配的分子决定因素
- 批准号:
10247829 - 财政年份:2020
- 资助金额:
$ 55.07万 - 项目类别: