The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.

2 孔域钾通道在急性肺损伤中的作用。

基本信息

项目摘要

DESCRIPTION (provided by applicant): Despite advances in Pulmonology and Intensive Care Medicine, mortality rates of patients with Acute Lung Injury (ALI) remain high, perhaps because the underlying mechanisms of this disease are poorly understood. Patients with ALI routinely require high oxygen concentrations and positive-pressure ventilation, although both therapies accentuate ongoing lung injury. While the signaling cascades activated by hyperoxia are well known, "mechano-transduction" after alveolar distension is poorly understood. Recent literature suggests that 2-pore domain potassium (K2P) channels may act as mechano-sensors and mechano-transducers, and participate in stimulus-secretion coupling. However, little is known about the expression and potential functions of K2P channels in the lung. We propose a bold and novel hypothesis that K2P channels are expressed in lung epithelial cells, and that pathogenic K2P channel regulation caused by hyperoxia, mechanical stretch and TNF-a exposure, an environment similar to the one encountered in ALI, results in dysregulation of inflammatory mediator secretion from epithelial cells, and in loss of epithelial barrier function, two hallmarks of ALI. Our overarching objective is to investigate the mechanisms leading to hyperoxia- and mechanical stretch- induced lung injury, and to identify K2P channels as a new target in the search for innovative therapeutic strategies against ALI. Specifically, we will use both in vitro and in vivo approaches including K2P knockout mice to [1] investigate the effects of hyperoxia, mechanical stretch and TNF-a on K2P channel expression and function in cultured mouse and primary rat and human alveolar epithelial cells using molecular techniques, immunohistochemistry and patch clamp studies, [2] to determine the role of K2P channels in inflammatory mediator secretion from cultured and primary alveolar epithelial cells, and in broncho-alveolar lavage fluid from K2P knockout mice, and [3] to demonstrate that K2P channels regulate epithelial barrier function via Ca2+-dependent tight junction phosphorylation. We have the unique expertise and technical capabilities to study the effects of hyperoxia and mechanical stretch in both in vitro and in vivo models of ALI. In addition, Dr. Jaggar has an inimitable setup to measure global and localized intracellular Ca2+ concentrations. The academic environment at UTHSC, the outstanding mentorship, rich opportunities for collaborations, and the institutional, departmental, and divisional commitment to my research success provide the intellectual infrastructure and the financial support to guarantee my progress towards independent research funding, including an R01 award, within 5 years. These long-term goals will be achieved by targeting a minimum of 2 publications and 2 abstract presentations per year at international meetings, supplemented by formal coursework, and the close mentorship of Dr. Waters, Dr. Anand and my Career Advisory Committee.
描述(由申请人提供):尽管肺病学和重症监护医学取得了进步,但急性肺损伤(ALI)患者的死亡率仍然很高,这可能是因为对该疾病的潜在机制知之甚少。 ALI 患者通常需要高浓度氧气和正压通气,尽管这两种疗法都会加重持续的肺损伤。虽然高氧激活的信号级联是众所周知的,但对肺泡扩张后的“机械传导”知之甚少。最近的文献表明,2 孔域钾 (K2P) 通道可能充当机械传感器和机械传感器,并参与刺激-分泌耦合。然而,人们对肺中 K2P 通道的表达和潜在功能知之甚少。我们提出了一个大胆而新颖的假设,即 K2P 通道在肺上皮细胞中表达,并且由高氧、机械拉伸和 TNF-a 暴露(类似于 ALI 中遇到的环境)引起的致病性 K2P 通道调节,导致炎症失调上皮细胞介质分泌和上皮屏障功能丧失是 ALI 的两个标志。我们的首要目标是研究导致高氧和机械牵张引起的肺损伤的机制,并确定 K2P 通道作为寻找针对 ALI 的创新治疗策略的新靶点。具体来说,我们将使用体外和体内方法(包括 K2P 敲除小鼠)[1] 研究高氧、机械拉伸和 TNF-a 对培养小鼠、原代大鼠和人肺泡上皮细胞中 K2P 通道表达和功能的影响分子技术、免疫组织化学和膜片钳研究,[2] 确定 K2P 通道在培养和原代肺泡上皮细胞炎症介质分泌以及支气管肺泡中的作用研究人员利用 K2P 敲除小鼠的灌洗液,[3] 证明 K2P 通道通过 Ca2+ 依赖性紧密连接磷酸化调节上皮屏障功能。 我们拥有独特的专业知识和技术能力来研究高氧和机械拉伸对 ALI 体外和体内模型的影响。此外,Jaggar 博士拥有独特的设置来测量全局和局部细胞内 Ca2+ 浓度。 UTHSC 的学术环境、出色的指导、丰富的合作机会以及机构、部门和部门对我的研究成功的承诺,提供了智力基础设施和财政支持,以保证我在独立研究资助方面取得进展,包括 R01 奖、 5年内。这些长期目标将通过每年在国际会议上至少发表 2 篇出版物和 2 次摘要演讲来实现,并辅以正式课程作业以及沃特斯博士、阿南德博士和我的职业咨询委员会的密切指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Schwingshackl其他文献

Andreas Schwingshackl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Schwingshackl', 18)}}的其他基金

Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
  • 批准号:
    10586093
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
  • 批准号:
    10356905
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
  • 批准号:
    10112957
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
Trek-1 Potassium Channels Protect from Hyperoxia-induced Acute Lung Injury
Trek-1 钾通道可预防高氧引起的急性肺损伤
  • 批准号:
    9886150
  • 财政年份:
    2020
  • 资助金额:
    $ 17.39万
  • 项目类别:
The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.
2 孔域钾通道在急性肺损伤中的作用。
  • 批准号:
    8632613
  • 财政年份:
    2014
  • 资助金额:
    $ 17.39万
  • 项目类别:
The Role of 2-Pore Domain Potassium Channels in Acute Lung Injury.
2 孔域钾通道在急性肺损伤中的作用。
  • 批准号:
    8984909
  • 财政年份:
    2014
  • 资助金额:
    $ 17.39万
  • 项目类别:

相似海外基金

Neonatal Hypovolemic Cardiac Arrest: Role of Early Rapid Volume Resuscitation
新生儿低血容量性心脏骤停:早期快速容量复苏的作用
  • 批准号:
    10739265
  • 财政年份:
    2023
  • 资助金额:
    $ 17.39万
  • 项目类别:
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
  • 批准号:
    10592000
  • 财政年份:
    2023
  • 资助金额:
    $ 17.39万
  • 项目类别:
The role of IL-33 in hyperoxia-induced neonatal lung injury and bronchopulmonary dysplasia
IL-33在高氧诱导的新生儿肺损伤和支气管肺发育不良中的作用
  • 批准号:
    10593394
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
Epitenon-derived progenitor cells in tendon healing and adaptation
表腱衍生的祖细胞在肌腱愈合和适应中的作用
  • 批准号:
    10640168
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
The role of IL-33 in hyperoxia-induced neonatal lung injury and bronchopulmonary dysplasia
IL-33在高氧诱导的新生儿肺损伤和支气管肺发育不良中的作用
  • 批准号:
    10665809
  • 财政年份:
    2022
  • 资助金额:
    $ 17.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了