A platform for genome mining of multidrug-resistant pathogens to develop therapeutic phages using synthetic biology
利用合成生物学开发治疗性噬菌体的多重耐药病原体基因组挖掘平台
基本信息
- 批准号:10356122
- 负责人:
- 金额:$ 16.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-18 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibiotic ResistanceAntibioticsAntimicrobial ResistanceBacteriaBacteriophagesBiologyBiomedical EngineeringCell Surface ReceptorsCellsCenters for Disease Control and Prevention (U.S.)ChromosomesCytolysisDNA sequencingDevelopmentDiseaseEndotoxinsEngineeringEnvironmentEssential GenesExperimental DesignsGenesGeneticGenetic EngineeringGenomeGenome engineeringGoalsGoldHorizontal Gene TransferHumanInfectionKnowledgeLearningLifeLife Cycle StagesLyticLytic PhaseMedicalMethodsMicrobial BiofilmsMiningModalityModelingModern MedicineModificationMonoclonal AntibodiesMulti-Drug ResistanceMutationPatientsPenicillin ResistancePharmaceutical PreparationsPreparationProductionPropertyProphagesReportingResistanceRogaineSafetySepsisSeriesSourceSpecificityStreptococcal InfectionsStreptococcus pyogenesStructureTestingTherapeuticVaccinesVirulenceVirulence FactorsWound Infectionantimicrobialarmbacterial resistancebasedesigndesign-build-testefficacy testingexperiencefunctional genomicsgene interactionglobal healthhigh throughput analysishuman pathogenin vivoin vivo Modelinsightinterestmulti-drug resistant pathogenpathogenpathogenic bacteriareceptorresearch and developmentsmall moleculesynthetic biologytherapeutic targettool
项目摘要
PROJECT SUMMARY/ABSTRACT
Multidrug resistant [MDR] pathogens represent a global health threat and a challenge for modern medicine;
and, as bacterial resistance to new antibiotics is now outpacing the antibiotic development effort, it is critical to
develop new effective antimicrobial alternatives. The antimicrobial resistance crisis is bringing new interests
worldwide to develop phage-based therapies. Over the last decade, efforts in the U.S. to produce phage
therapeutics targeting different bacterial pathogens have shown promising results, including successful
treatments of life-threatening infections in human patients. Safety of phage therapy is still a concern in the
U.S.; however FDA has highlighted requirements for phage preparation: they need to be safe, pure, potent,
exclusively lytic, non-transducing, and lacking undesirable genes (antibiotic resistance, virulence factors) and
bacterial endotoxins.
If bacteriophages for therapy have historically been isolated from natural environments, recent progresses in
phage genetics and genome engineering have proven successful to generate synthetic, strictly lytic derivatives
targeting pathogens. The development of synthetic phages against MDR pathogens would require pipelines to
accelerate our knowledge on newly discovered phages and their potential for synthetic biology. Critical insights
into their biology, i.e. genome structure, phage replication cycle, genetic content (essential genes versus
dispensable [antibiotic resistance and virulence genes]), interaction with the target host, are a prerequisite.
Here, we propose a platform to (i) mine the genomes of MDR pathogens, a gold mine to identify dormant
lysogenic phages directly from within their natural host; and (ii) develop high-throughput pipelines to quickly
gain knowledge on the phage biology to guide our efforts to engineer synthetic phages as therapeutics.
We will use the Group A Streptococcus (GAS), a “Concerning Threat” on the 2019 CDC “18 MDR pathogens”
Watch List, as our model. We showed that Tn-seq could identify functional lysogenic phages from cryptic ones
in GAS genomes, and mutations to reboot dormant prophages into their lytic cycle. In Aim 1, we will produce
the critical knowledge to guide decision on what phages to select for therapeutic potential using synthetic
biology: we will experimentally assess phage genome organization, phage replication/transduction
mechanisms, host range and cell surface receptor(s). In Aim 2, we will implement a design-build-test-learn
cycle" pipeline to optimize the synthetic biology effort, i.e. deletion of undesirable genes and addition of
“payload” genes, to enhance their potential as therapy phages. Finally, we will use in vivo model of wound
infection to test the efficacy of the synthetic phages we generated. Our overarching goal is to develop the tools
and experience to apply our synthetic biology phage-engineering platform to other MDR pathogens.
项目摘要/摘要
多药耐药[MDR]病原体代表了全球健康威胁和对现代医学的挑战;
而且,随着对新抗生素的耐药性现在超过了抗生素开发工作,对
开发新的有效抗菌替代品。抗微生物抵抗危机带来了新的利益
全球开发基于噬菌体的疗法。在过去的十年中,在美国生产噬菌体的努力
靶向不同细菌病原体的治疗已显示出希望的结果,包括成功
人类患者威胁生命的感染的治疗。噬菌体疗法的安全仍然是
我们。;但是,FDA强调了噬菌体准备的要求:它们需要安全,纯净,潜力,
仅裂解,不渗透和缺乏不明确的基因(抗生素抗性,病毒因素)和
细菌内毒素。
如果历史上已经从自然环境中隔离了用于治疗的细菌噬细胞,那么最近的进展
噬菌体遗传学和基因组工程已被证明成功地产生了合成的,严格的裂解衍生物
靶向病原体。针对MDR病原体的合成噬菌体的发展将需要管道到
加速我们对新发现的噬菌体及其合成生物学潜力的知识。批判性见解
进入它们的生物学,即基因组结构,噬菌体复制周期,遗传含量(必需基因与
与目标宿主的相互作用是可分配的[抗生素耐药性和病毒基因])是先决条件。
在这里,我们提出了一个平台,以(i)开采MDR病原体的基因组,这是一个识别休眠的金矿
裂解物噬菌体直接从其自然宿主内部。 (ii)开发高通量管道以快速
获得有关噬菌体生物学的知识,以指导我们努力设计合成噬菌体作为治疗。
我们将使用该组A链球菌(GAS),这是2019年CDC“ 18 MDR病原体”的“威胁”
观看列表,作为我们的模型。我们表明TN-Seq可以从加密蛋白
在气体基因组和突变中重新启动休眠的裂纹周期。在AIM 1中,我们将生产
批判性知识指导决定使用合成的噬菌体选择哪些噬菌体的治疗潜力
生物学:我们将通过实验评估噬菌体基因组组织,噬菌体复制/转导
机理,宿主范围和细胞表面受体。在AIM 2中,我们将实施一个设计建造测试赛车网
循环”管道,以优化合成生物学工作,即缺失不良基因和添加
“有效载荷”基因,以增强其作为治疗噬菌体的潜力。最后,我们将使用伤口的体内模型
感染以测试我们产生的合成噬菌体的效率。我们的总体目标是开发工具
并经验将我们的合成生物学噬菌体工程平台应用于其他MDR病原体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoann Stephane Le Breton其他文献
Yoann Stephane Le Breton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoann Stephane Le Breton', 18)}}的其他基金
Role of ScfAB in the Pathophysiology of the Group A Streptococcus
ScfAB 在 A 族链球菌病理生理学中的作用
- 批准号:
9403487 - 财政年份:2017
- 资助金额:
$ 16.91万 - 项目类别:
相似国自然基金
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
猪粪水热炭对红壤-蔬菜系统中抗生素抗性基因的风险控制及其机理
- 批准号:42307038
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蚯蚓-菌根协同消减抗生素抗性基因的微生物驱动机制
- 批准号:32301448
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭对厌氧膜生物反应器抑制畜禽养殖废水中抗生素抗性基因的调控作用和机制
- 批准号:52300210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
An RNA Nanosensor for the Diagnosis of Antibiotic Resistance in M. Tuberculosis
用于诊断结核分枝杆菌抗生素耐药性的 RNA 纳米传感器
- 批准号:
10670613 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Development of a model of Gonococcal conjunctivitis for vaccine evaluations
开发用于疫苗评估的淋菌性结膜炎模型
- 批准号:
10740430 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别:
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 16.91万 - 项目类别: