Molecular mechanisms of the mitochondrial calcium uniporter
线粒体钙单向转运蛋白的分子机制
基本信息
- 批准号:10192757
- 负责人:
- 金额:$ 31.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAnimalsAreaBehaviorBindingBiochemicalBiological AssayBuffersCaenorhabditis elegansCardiacCell DeathCell RespirationCell membraneChimera organismClustered Regularly Interspaced Short Palindromic RepeatsCo-ImmunoprecipitationsCysteineDetergentsDiseaseDrug KineticsElectrophysiology (science)EnvironmentFunctional disorderFutureGenerationsHandHomeostasisHumanInner mitochondrial membraneIon ChannelIon TransportIonsKnowledgeLeadLearningLightLiteratureMammalian CellMediatingMedicineMembraneMethodsMitochondriaMitochondrial MatrixMolecularMorphologic artifactsMuscleMutationMyopathyNeuromuscular DiseasesNeuronsPathologicPathologyPathway interactionsPermeabilityPharmacologyPhospholipidsPhysiologicalPlasma CellsPlayProblem SolvingProceduresPropertyProteinsRegulationResearchResearch PersonnelResolutionRestRoleSeriesSignal TransductionSiteStructureSupport SystemSystemTechniquesTestingTherapeutic UsesTransmembrane DomainXenopus oocytebasecalcium uniporterdesignexperimental studygenome editinghigh throughput screeningimprovedinhibitor/antagonistknowledge basemethod developmentmitochondrial membraneneuromuscularnovel therapeuticspatch clampreconstitutiontool
项目摘要
Project Summary/Abstract
The mitochondrial calcium uniporter (the uniporter) is a multi-subunit Ca2+ ion channel that imports
cytoplasmic Ca2+ into the mitochondrial matrix. In mammalian cells, the uniporter plays a crucial role
in regulating ATP generation, buffering intracellular Ca2+, and modulating cell-death pathways. Its
dysfunction has been implicated in a wide range of pathological conditions, including a human
neuromuscular disorder characterized by proximal myopathy and learning difficulties. This project
seeks to expand the knowledge base in the molecular mechanisms underlying the uniporter's key
roles in pathophysiology. Specific aims include developing new electrophysiological tools, and using
established methods to address fundamental questions in ion transport and gating. Currently,
mechanistic studies of the uniporter have been impeded by a technical barrier: The small size of
mitochondria makes it difficult to apply patch-clamp electrophysiology to analyze the channel in
native environments. In Aim #1, we solved this problem by targeting uniporter proteins to alternative
membrane systems, including reconstituted phospholipid bilayers and cell plasma membranes. Both
systems offer much straightforward electrophysiological access for high-resolution recordings in
macroscopic and single-channel levels. We plan to fully establish these tools so that researchers
can begin to adopt classical ion-channel electrophysiology to illuminate most fundamental
mechanisms of the uniporter. While developing new techniques, we will also use a CRISPR-based
strategy already in use in my lab to attack key mechanistic questions. (1) How does a regulatory
MICU1 subunit inactivate the uniporter in resting cellular conditions (Aim #2)? (2) How do MCU and
EMRE, the membrane-embedded subunits of the uniporter, form an open Ca2+ pathway for Ca2+ to
permeate mitochondrial membranes (Aim #3)? Several results, including a mutation that
unexpectedly abolishes uniporter inactivation by MICU1, and the discovery of a unique MCU
chimera that can conduct Ca2+ without EMRE present, allow us to formulate logical and testable
hypotheses to answer these important but also difficult questions. Completion of this project can
improve the scientific knowledge necessary to design new therapies to treat disease by modulating
mitochondrial Ca2+ homeostasis. Moreover, human uniporter proteins purified here can be used for
high-throughput screening assays to identify uniporter-targeting pharmacological compounds. New
electrophysiological methods will allow detailed analysis of drug kinetics, required to improve lead
compounds for potential therapeutic use.
项目概要/摘要
线粒体钙单向转运蛋白(the uniporter)是一个多亚基 Ca2+ 离子通道,输入
细胞质 Ca2+ 进入线粒体基质。在哺乳动物细胞中,单向转运蛋白起着至关重要的作用
调节 ATP 生成、缓冲细胞内 Ca2+ 和调节细胞死亡途径。它是
功能障碍与多种病理状况有关,包括人类
以近端肌病和学习困难为特征的神经肌肉疾病。这个项目
寻求扩大单向转运蛋白关键分子机制的知识库
在病理生理学中的作用。具体目标包括开发新的电生理学工具,并使用
建立了解决离子传输和门控基本问题的方法。现在,
单向转运蛋白的机制研究受到技术障碍的阻碍:
线粒体使得应用膜片钳电生理学来分析通道变得困难
原生环境。在目标#1中,我们通过将单向转运蛋白定位为替代蛋白来解决这个问题
膜系统,包括重构的磷脂双层和细胞质膜。两个都
系统为高分辨率记录提供了非常简单的电生理学访问
宏观层面和单渠道层面。我们计划全面建立这些工具,以便研究人员
可以开始采用经典的离子通道电生理学来阐明最基本的
单向转运蛋白的机制。在开发新技术的同时,我们还将使用基于 CRISPR 的
我的实验室已使用该策略来解决关键的机械问题。 (一)如何监管
MICU1 亚基在静息细胞条件下使单向转运蛋白失活(目标#2)? (2) MCU 和
EMRE,单向转运蛋白的膜嵌入亚基,形成开放的 Ca2+ 途径,使 Ca2+
渗透线粒体膜(目标#3)?几个结果,包括一个突变
出乎意料地废除了 MICU1 的单向转运蛋白失活作用,并发现了独特的 MCU
嵌合体可以在没有 EMRE 存在的情况下传导 Ca2+,使我们能够制定逻辑且可测试的
回答这些重要但也困难的问题的假设。该项目的完成可以
通过调节来提高设计治疗疾病的新疗法所需的科学知识
线粒体 Ca2+ 稳态。此外,此处纯化的人类单向转运蛋白可用于
高通量筛选试验来鉴定单向转运蛋白靶向药理学化合物。新的
电生理方法将允许对药物动力学进行详细分析,这是改善铅所需的
具有潜在治疗用途的化合物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ming-Feng Tsai其他文献
Ming-Feng Tsai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ming-Feng Tsai', 18)}}的其他基金
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10676910 - 财政年份:2021
- 资助金额:
$ 31.1万 - 项目类别:
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10487518 - 财政年份:2021
- 资助金额:
$ 31.1万 - 项目类别:
Molecular Physiology of Mitochondrial Calcium Transporters
线粒体钙转运蛋白的分子生理学
- 批准号:
10340461 - 财政年份:2021
- 资助金额:
$ 31.1万 - 项目类别:
Molecular mechanisms of the mitochondrial calcium uniporter
线粒体钙单向转运蛋白的分子机制
- 批准号:
10440255 - 财政年份:2018
- 资助金额:
$ 31.1万 - 项目类别:
相似国自然基金
哺乳动物透明基因相关成蛋白1(DIAPH1)通过钙离子-CaN-NFAT信号通路诱导糖尿病心肌病心肌肥大的机制研究
- 批准号:82000344
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
通过高通量测序及DNA宏条形码食性分析研究川西高原食肉动物食性生态位关系及人兽冲突
- 批准号:31970431
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
蓝氏贾第鞭毛虫EVs通过蛋白传递介导虫体致病的机制研究
- 批准号:31860598
- 批准年份:2018
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
c-Jun通过调控染色质结构诱导小鼠ESC多能性退出的机理研究
- 批准号:31801069
- 批准年份:2018
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
蒙药乳腺-I号通过CRYAB蛋白调节内质网应激通路治疗实验动物乳腺增生症机制研究
- 批准号:81873313
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别:
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
- 批准号:
10722510 - 财政年份:2023
- 资助金额:
$ 31.1万 - 项目类别: