Controlling biomicrofluidic device surface chemistry using smart surface-segregating zwitterionic polymers
使用智能表面隔离两性离子聚合物控制生物微流体装置表面化学
基本信息
- 批准号:10193245
- 负责人:
- 金额:$ 25.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdoptionAdsorptionAirAntibodiesAntigensAvidinBindingBinding SitesBiologicalBiomanufacturingBiomedical ResearchBiotinCase StudyCell AdhesionCell Culture TechniquesCellsChemistryComplexDevicesDrug IndustryGasesGlassGoalsHealthcareHydrophobicityIndustryKnowledgeManufacturer NameMeasuresMediatingMethodsMicrofluidic MicrochipsMicrofluidicsModificationOpticsPatientsPerformancePermeabilityPharmaceutical PreparationsPolymersPropertyProteinsProtocols documentationResearchResearch PersonnelResistanceSamplingSiliconStructureSurfaceTechnologyTissuesTranslatingWaterWorkaqueousbasebiomaterial compatibilitycell typecopolymercostdesigndrug use screeningexperimental studyflexibilityfunctional grouphydrophilicityimprovedmacromoleculemechanical propertiesmembermonomernanoscalenew technologynovelorgan on a chipphysical propertypolydimethylsiloxanepreventsegregationsmall moleculesolutestability testingtissue cultureuser-friendly
项目摘要
Abstract
The use of microfluidic devices in biomedical research through tissue culture experiments
(tissues/organs-on-chips) and biological separations is growing rapidly. Polydimethylsiloxane (PDMS)
has been the most popular material for microfluidics due to its feature replication down to the nanoscale,
flexibility, gas permeability for oxygenation, and low cost. Yet, the hydrophobicity of PDMS leads to the
adsorption of macromolecules (e.g. proteins) and hydrophobic compounds (e.g. Class II & IV drugs) on
device surfaces. This curtails its use for drug screening in “organs-on-chips”, and other applications.
Current technologies to improve PDMS surface hydrophilicity involve added processing steps and/or do
not create surfaces that remain hydrophilic for long periods. They also cannot simultaneously incorporate
functional groups to promote binding of specific biomolecules and create bioactive surfaces. This
hampers their large-scale implementation and adoption. Our long-term goal is to develop smart materials
to improve the precision, robustness, and functionality of biomicrofluidics while keeping their large-scale
fabrication simple, facile, and efficient. In this application, we detail a novel, simple technology to modify
PDMS via rationally designed smart polymers that, when blended with PDMS during device manufacture,
spontaneously segregate to surfaces and create a <1 nm layer when in contact with aqueous solutions
that prevents non-specific adsorption of organic and biomolecules, yet can be functionalized to control
specific binding for a given application. Our methods are fully compatible with existing PDMS device
manufacture protocols without any additional processing steps. To achieve this immediate goal, we aim
to develop novel CP additives for “Smart Copolymer Addition for Modification of PDMS Surfaces”
(SCAMPS), specifically highly branched CPs of PDMS with zwitterionic (ZI) groups (Aim 1), with the
addition of functional groups that mediate specific binding (Aim 2). We will design and synthesize several
members of each smart copolymer class, prepare samples from their blends with PDMS, and
characterize them in terms of their mechanical properties, optical clarity, surface chemistry, and tendency
to adsorb proteins and small molecule drugs. For functionalized samples, we will also measure the
selective adhesion of desired solutes (e.g. avidin on biotin-functional surfaces) and cell types. We will
also test the stability and chemistry of the surface upon long-term storage in air and water. We will prepare
microfluidic devices from most promising candidates and validate their performance in long-term cell
culture experiments. We expect the technologies we develop to improve the accessibility of microfluidics
to end users (patients, researchers, drug industry) by providing a low-cost and user-friendly approach to
the fabrication of reliable biomicrofluidics.
抽象的
通过组织培养实验在生物医学研究中使用微流体设备
(片上的组织/器官)和生物学分离正在迅速增长。聚二甲基硅氧烷(PDMS)
由于其特征复制到纳米级,因此一直是微流体的最受欢迎的材料,
柔韧性,氧合的气体渗透性和低成本。然而,PDM的疏水性导致
大分子(例如蛋白质)和疏水化合物(例如II类药物)的吸附
设备表面。这种咖喱在“片上器官”和其他应用中用于药物筛查。
当前改善PDMS表面亲水性的技术涉及添加的处理步骤和/或DO
不会产生长期保持亲水性的表面。他们也不能简单地合并
功能组促进特定生物分子的结合并产生生物活性表面。这
阻碍其大规模的实施和采用。我们的长期目标是开发智能材料
提高生物机体的精度,鲁棒性和功能,同时保持其大规模
制造简单,便捷且高效。在此应用程序中,我们详细介绍了一种简单的技术来修改
PDM通过理性设计的智能聚合物,当设备制造过程中与PDMS混合时,
与水溶液接触时,赞助将表面分离到表面并创建<1 nm层
这可以防止有机和生物分子的非特异性吸附,但可以将其功能化以控制
给定应用程序的特定绑定。我们的方法与现有PDMS设备完全兼容
制造协议,没有任何其他处理步骤。为了实现这一直接目标,我们的目标
开发新颖的CP添加剂,以“添加智能共聚物来修饰PDMS表面”
(SCAMP),特别是具有Zwitterionic(Zi)组的PDM的高度分支CPS(AIM 1),带有
添加介导特定结合的官能团(AIM 2)。我们将设计和合成几个
每个智能共聚物类的成员,准备与PDM的混合物中的样本,以及
根据它们的机械性能,光学清晰度,表面化学和趋势来表征它们
吸附蛋白和小分子药物。对于功能化样品,我们还将测量
选择性溶质(例如生物素功能表面上的Avidin)和细胞类型的选择性粘附。我们将
我们将准备
来自最有前途的候选人的微流体设备,并在长期细胞中验证其性能
培养实验。我们希望我们开发的技术可以改善微流体的可及性
通过提供低成本和用户友好的方法来最终用户(患者,研究人员,制药行业)
可靠的生物微流体的制造。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ayse Asatekin其他文献
Ayse Asatekin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ayse Asatekin', 18)}}的其他基金
On Demand Dissoluble Supramolecular Hydrogels: Towards Pain Free Burn Dressings
按需可溶性超分子水凝胶:迈向无痛烧伤敷料
- 批准号:
10658220 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
Controlling biomicrofluidic device surface chemistry using smart surface-segregating zwitterionic polymers
使用智能表面隔离两性离子聚合物控制生物微流体装置表面化学
- 批准号:
10446995 - 财政年份:2021
- 资助金额:
$ 25.08万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Light-Based Approaches to Effective and Sustainable Removal of Arsenic and Uranium from Drinking Water Sources
有效且可持续地去除饮用水源中砷和铀的光方法
- 批准号:
10707921 - 财政年份:2022
- 资助金额:
$ 25.08万 - 项目类别:
Light-Based Approaches to Effective and Sustainable Removal of Arsenic and Uranium from Drinking Water Sources
有效且可持续地去除饮用水源中砷和铀的光方法
- 批准号:
10354273 - 财政年份:2022
- 资助金额:
$ 25.08万 - 项目类别:
Controlling biomicrofluidic device surface chemistry using smart surface-segregating zwitterionic polymers
使用智能表面隔离两性离子聚合物控制生物微流体装置表面化学
- 批准号:
10446995 - 财政年份:2021
- 资助金额:
$ 25.08万 - 项目类别:
Anode Modification to Target Pb Removal for Drinking Water Purification using Inverted Capacitive Deionization
使用倒置电容去离子对阳极进行修饰以实现饮用水净化中的铅去除目标
- 批准号:
9345861 - 财政年份:2017
- 资助金额:
$ 25.08万 - 项目类别:
Novel Fiber Scaffolding for Effective Removal of Diverse Hazardous Chemicals from Water
用于有效去除水中多种有害化学物质的新型纤维支架
- 批准号:
9486775 - 财政年份:2016
- 资助金额:
$ 25.08万 - 项目类别: