Racial Bias in a VA Algorithm for High-Risk Veterans
针对高风险退伍军人的 VA 算法中的种族偏见
基本信息
- 批准号:10189149
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAfrican AmericanAlgorithmsCare given by nursesCaringCessation of lifeCharacteristicsClinicalDataEnrollmentExposure toFaceFundingFutureGoalsHealthHomeHospitalizationIndividualInvestigationLaboratoriesLeadMethodsMissionModelingNeeds AssessmentOutcomePalliative CarePatientsPredictive AnalyticsPrimary Health CarePsychosocial StressRaceReportingResearchResource AllocationResourcesRiskServicesStructural RacismSubgroupSurveysTeam NursingTestingVeteransVeterans Health Administrationadverse outcomeanalytical toolbasecare outcomesclinical applicationclinical caredata warehouseexperiencehealth care disparityhealth care servicehealth disparityhealth information technologyhigh riskhospice environmenthousing instabilityimprovedinnovationmortalitynovelpatient subsetsprediction algorithmpredictive modelingprogramsracial biasracial disparityscreeningsocial health determinantssocial metricstelehealthtransportation access
项目摘要
PROJECT SUMMARY
African-American Veterans are at particular risk of adverse outcomes, including mortality and hospitalization,
due to adverse social determinants of health (SDoH) including poor transportation access and housing
instability. Identifying individuals at risk of adverse outcomes has been a priority at the Veterans Health
Administration (VA), which has implemented novel predictive analytic tools in clinical care settings to target
care resources efficiently and equitably. The VA has invested an average of 5% of total VA spending towards
health information technology to support such algorithms. One predictive algorithm implemented nationwide
and commonly used by VA clinicians is the Care Assessment Needs (CAN) score, which predicts risk of future
hospitalization and/or death for over 5 million Veterans receiving primary care. The CAN score is currently
used by patient-aligned care teams (PACTs) and nurse care navigators to direct clinical programs and
resources, including telehealth, palliative care, and home-based primary care, to high-risk Veterans.
The CAN score is primarily based on laboratory, demographic, utilization, and other administrative data.
Recent studies have shown that similar algorithms used in non-VA settings may mischaracterize risk for
vulnerable patient subgroups – including African-Americans – whose health is heavily influenced by
disproportionate exposure to adverse SDoH. Importantly, race and SDoH are not routine inputs into the CAN
score. There is a growing concern that algorithms like the CAN score could generate “algorithmically unfair”
predictions that systematically mischaracterize risk for subgroups – particularly African-Americans – whose
care is heavily influenced by SDoH. However, there has been no systematic investigation into unfairness of the
CAN score between African-American and White Veterans.
In this project, we will systematically examine algorithmic unfairness in the VA CAN algorithm and develop
approaches to mitigate it, including testing the incorporation of SDoH metrics. Our preliminary investigations
into the CAN score show that it underestimates risk for African-Americans compared to White Veterans, which
may lead to fewer referrals of high risk African-American Veterans to clinical programs. In Aim 1, we will
develop methods to mitigate algorithmic unfairness in the CAN score using its existing variables. In Aim 2, we
will incorporate race and select metrics of SDoH that are available through VA screening efforts into the CAN
score to improve algorithmic unfairness. In Aim 3, we will use the “Fair” CAN score generated in Aim 2 to
investigate how mitigating unfairness would change the racial composition of Veterans enrolled in clinical
programs targeted at high-risk Veterans.
项目概要
非裔美国退伍军人尤其面临不良后果的风险,包括死亡和住院治疗,
由于不利的健康社会决定因素(SDoH),包括交通便利和住房条件差
识别存在不良后果风险的个人一直是退伍军人健康部门的首要任务。
管理局(VA),在临床护理环境中实施了新颖的预测分析工具来瞄准
VA 平均将 VA 总支出的 5% 投入到医疗资源中。
支持此类算法的健康信息技术在全国范围内实施。
VA 爱好者常用的是护理评估需求 (CAN) 评分,它可以预测未来的风险
目前有超过 500 万接受初级护理的退伍军人住院和/或死亡。
供患者护理团队 (PACT) 和护士护理导航员用来指导临床计划和
向高危退伍军人提供远程医疗、姑息治疗和家庭初级保健等资源。
CAN 分数主要基于实验室、人口统计、利用率和其他管理数据。
最近的研究表明,在非 VA 环境中使用的类似算法可能会错误地描述风险
弱势患者亚群——包括非裔美国人——他们的健康受到以下因素的严重影响
不成比例地暴露于不利的 SDoH 重要的是,种族和 SDoH 并不是 CAN 的常规输入。
人们越来越担心 CAN 评分等算法可能会产生“算法不公平”。
系统性地错误描述亚群体风险的预测 — — 特别是非裔美国人 — —
医疗服务受到 SDoH 的严重影响,但目前尚未对医疗服务的不公平性进行系统调查。
非裔美国人和白人退伍军人之间的 CAN 得分。
在这个项目中,我们将系统地检查VA CAN算法中的算法不公平性并开发
缓解该问题的方法,包括测试 SDoH 指标的纳入。
CAN 评分显示,与白人退伍军人相比,它低估了非裔美国人的风险,这
可能会导致更少的高风险非裔美国退伍军人转诊至临床计划 在目标 1 中,我们将
在目标 2 中,我们使用现有变量开发方法来减轻 CAN 评分中的算法不公平性。
将通过 VA 筛选工作将 SDoH 的种族和选择指标纳入 CAN
在目标 3 中,我们将使用目标 2 中生成的“公平”CAN 分数来改善算法不公平性。
调查减轻不公平现象将如何改变参加临床的退伍军人的种族构成
针对高风险退伍军人的计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amol S Navathe其他文献
Amol S Navathe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amol S Navathe', 18)}}的其他基金
Racial Bias in a VA Algorithm for High-Risk Veterans
针对高风险退伍军人的 VA 算法中的种族偏见
- 批准号:
10355505 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Racial Bias in a VA Algorithm for High-Risk Veterans
针对高风险退伍军人的 VA 算法中的种族偏见
- 批准号:
10625965 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Segmenting High-Need, High-Cost Veterans into Potentially Actionable Subgroups
将高需求、高成本的退伍军人细分为潜在可行的亚组
- 批准号:
10176376 - 财政年份:2018
- 资助金额:
-- - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Implementation and Implications of Sickle Cell Trait Screening in the NCAA
镰状细胞性状筛查在 NCAA 中的实施及其意义
- 批准号:
10842764 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Making Healthy Habits Stick: Extended Contact Interventions to Promote Long Term Physical Activity in African American Cancer Survivors
养成健康习惯:延长接触干预措施以促进非裔美国癌症幸存者的长期身体活动
- 批准号:
10821052 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Impact of School Meal Delivery on Behavioral Disorders among Children in Health Disparity Populations
学校供餐对健康差异人群中儿童行为障碍的影响
- 批准号:
10728640 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Exercise adherence and cognitive decline: Engaging with the Black community to develop and test a goal-setting and exercise intensity intervention
运动坚持和认知能力下降:与黑人社区合作制定和测试目标设定和运动强度干预措施
- 批准号:
10767102 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Expanding the reach of the Nutritious Eating with Soul (NEW Soul) program: A Type 2 hybrid effectiveness-implementation trial
扩大灵魂营养饮食 (NEW Soul) 计划的范围:2 类混合有效性实施试验
- 批准号:
10430659 - 财政年份:2022
- 资助金额:
-- - 项目类别: