Auditory-based navigation: attentional shifts rapidly modulate hippocampal codes
基于听觉的导航:注意力转移快速调节海马代码
基本信息
- 批准号:10352450
- 负责人:
- 金额:$ 44.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcousticsAgingAlzheimer&aposs DiseaseAnimal ExperimentationAnimal ModelAnimalsAttentionAuditoryBehaviorBirdsBrainBrain regionCallithrixCanesCellsChiropteraClinicalCodeCognitiveComplexDimensionsEcholocationEnvironmentEpilepsyExhibitsFlying body movementFoodFoundationsFunctional disorderFutureHealthHearing problemHippocampus (Brain)HomeHumanImpairmentKnowledgeLeadLightLinkLocationMajor Depressive DisorderMammalsMapsMeasurementMeasuresMedicalMedical DeviceMemoryMental disordersMonitorMultimediaNeurobiologyNeurodegenerative DisordersNeurologic DeficitNeuronsNeurosciencesParkinson DiseasePatient MonitoringPositioning AttributeResearchRewardsRodentSchizophreniaSignal TransductionSpeedStructureSymptomsSystemTestingTimeTongueTraining ProgramsTravelWorkactive controlattentional modulationbaseblinddesigndirected attentionexperimental studyflygazeinnovationinsightlight weightmetermillisecondminiaturizeminiaturized devicenervous system disordernew technologynovelplace fieldsrelating to nervous systemsocialsonarsoundspatial memoryway findingwirelesswireless electronic
项目摘要
Project Summary/Abstract
The hippocampus, a brain structure implicated in spatial memory and navigation, show changes in the course
of aging, mental illnesses, neurological disorders, and neurodegenerative diseases. Hippocampal dysfunctions
give rise to diverse clinical symptoms, many of which are tied to impairments in attention and navigation. In
healthy subjects, spatial attention and navigation are tightly linked, because mapping the environment requires
attention to one’s surroundings. Furthermore, while navigating, humans and other animals switch attention
between two complementary coordinate systems: a world-centered reference frame for monitoring absolute
position, and an egocentric reference frame for monitoring relative position with respect to obstacles,
conspecifics, and targets. Little is known about neural dynamics that underlie the rapid shifts in attention that
accompany switches between these reference frames—primarily because reliable indicators of spatial
attention are lacking in standard animal models. The proposed research bridges this gap by exploiting the bat,
a mammal that actively controls its echolocation signals to attend to objects while navigating—similar to many
blind humans who use echoes from self-produced sounds (tongue clicks and cane tapping) to localize objects
and navigate indoors and outdoors. Both bats and human blind echolocators attend to objects using their
sonar, generating an ‘acoustic flashlight’—which provides a direct metric of their moment-to-moment spatial
attention. The proposed experiments will track overt spatial attentional shifts while wirelessly recording
hippocampal neurons to study attentional effects on neural activity. The hypothesis to be tested is that overt
spatial attention rapidly modulates hippocampal spatial codes, by sharpening spatial representation and by
switching hippocampal coding between world-centered and egocentric coordinate frames. To do so, animals
will navigate under two conditions: (1) a stationary and predictable environment where animals direct attention
to fixed objects, and where attentional demands are relatively low; and (2) an unpredictable environment with
moving conspecifics and targets, where attentional demands are high and animals shift attention rapidly to
inspect dynamic objects. These predictable and unpredictable conditions will be studied in two different
experimental setups: a three-dimensional multimedia test room where animals navigate slowly, and a 200-
meter, one-dimensional tunnel where animals travel at high speeds. Because echolocation provides a powerful
explicit indicator of overt spatial attention, this research will yield transformative insights into attention-driven
hippocampal dynamics during naturalistic behavior. The findings will offer new insights into neurological deficits
in spatial navigation and memory, yield technological advances in the design of lightweight, miniaturized
assistive medical devices used to monitor patient health, and will shed new light on the neural basis of auditory
attention and auditory-based navigation in blind humans.
项目概要/摘要
海马体是一种与空间记忆和导航有关的大脑结构,在过程中显示出变化
衰老、精神疾病、神经系统疾病和神经退行性疾病。
引起多种临床症状,其中许多与注意力和导航障碍有关。
健康的受试者,空间注意力和导航是紧密相连的,因为绘制环境需要
此外,在导航时,人类和其他动物会转移注意力。
两个互补坐标系之间:用于绝对监控的以世界为中心的参考系
位置,以及一个以自我为中心的参考系,用于相对于障碍物的相对监控位置,
人们对注意力快速转变背后的神经动力学知之甚少。
伴随着这些参考系之间的切换——主要是因为可靠的空间指标
标准动物模型缺乏关注,拟议的研究通过利用蝙蝠来弥补这一差距,
一种在导航时主动控制其回声定位信号以关注物体的哺乳动物——与许多哺乳动物类似
盲人利用自身产生的声音(舌头的声音和手杖的敲击声)的回声来定位物体
蝙蝠和人类盲人回声定位器都利用它们的能力来识别物体。
声纳,产生“声学手电筒”——它可以直接测量它们的即时空间
所提出的实验将在无线记录的同时跟踪明显的空间注意力转移。
海马神经元研究注意力对神经活动的影响。
空间注意力通过锐化空间表征和通过
动物在以世界为中心和以自我为中心的坐标系之间切换海马编码。
会在两种条件下导航:(1)固定且可预测的环境,动物会集中注意力
固定物体,并且注意力要求相对较低;(2) 不可预测的环境;
移动的同种动物和目标,注意力要求很高,动物会迅速将注意力转移到
检查动态物体。这些可预测和不可预测的条件将在两种不同的情况下进行研究。
实验装置:一个三维多媒体测试室,动物在其中缓慢导航,以及一个 200
米,一维隧道,动物在其中高速移动,因为回声定位提供了强大的功能。
公开空间注意力的明确指标,这项研究将对注意力驱动产生变革性的见解
自然行为期间海马的动态变化将为神经缺陷提供新的见解。
在空间导航和记忆方面,在轻量化、小型化设计方面取得了技术进步
用于监测患者健康的辅助医疗设备,将为听觉的神经基础带来新的启示
盲人的注意力和基于听觉的导航。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CYNTHIA F MOSS其他文献
CYNTHIA F MOSS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CYNTHIA F MOSS', 18)}}的其他基金
Auditory-based navigation: attentional shifts rapidly modulate hippocampal codes
基于听觉的导航:注意力转移快速调节海马代码
- 批准号:
10184789 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Auditory-based navigation: attentional shifts rapidly modulate hippocampal codes
基于听觉的导航:注意力转移快速调节海马代码
- 批准号:
10592267 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
CRCNS: Innovative technologies inspired by biosonar
CRCNS:受生物声纳启发的创新技术
- 批准号:
6931657 - 财政年份:2004
- 资助金额:
$ 44.44万 - 项目类别:
CRCNS: Innovative technologies inspired by biosonar
CRCNS:受生物声纳启发的创新技术
- 批准号:
7238581 - 财政年份:2004
- 资助金额:
$ 44.44万 - 项目类别:
CRCNS: Innovative technologies inspired by biosonar
CRCNS:受生物声纳启发的创新技术
- 批准号:
7069140 - 财政年份:2004
- 资助金额:
$ 44.44万 - 项目类别:
CRCNS: Innovative technologies inspired by biosonar
CRCNS:受生物声纳启发的创新技术
- 批准号:
6887955 - 财政年份:2004
- 资助金额:
$ 44.44万 - 项目类别:
相似国自然基金
鼓泡床密相区温度、颗粒浓度与气泡分布的二维同步声学双参数成像
- 批准号:62301355
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
- 批准号:12304486
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
轨道模式依赖的声学拓扑态及其应用研究
- 批准号:12304492
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习的右心声学造影PFO-RLS和P-RLS智能诊断模型的构建
- 批准号:82302198
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声学和弹性分层介质反散射问题的理论与数值算法
- 批准号:12371422
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Miniaturized AD/ADRD Microphysiological Systems Platform for High-throughput Screening
用于高通量筛选的小型化 AD/ADRD 微生理系统平台
- 批准号:
10761587 - 财政年份:2023
- 资助金额:
$ 44.44万 - 项目类别:
Biomechanical mapping of the optic nerve head and peripapillary sclera using high frequency ultrasonic elastography
使用高频超声弹性成像对视神经乳头和视乳头周围巩膜进行生物力学测绘
- 批准号:
10712180 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Early Biomarkers of Alzheimer's Disease: Using Speech Markers to Detect Mild Cognitive Impairment
阿尔茨海默病的早期生物标志物:使用语音标志物检测轻度认知障碍
- 批准号:
10862942 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Quantitative cerebral blood vessel imaging biomarkers for AD and VCID
AD 和 VCID 的定量脑血管成像生物标志物
- 批准号:
10214060 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别:
Vitreo-retinal disease imaging with 3D annular-array ultrasound
使用 3D 环形阵列超声进行玻璃体视网膜疾病成像
- 批准号:
10289702 - 财政年份:2021
- 资助金额:
$ 44.44万 - 项目类别: