Computational imaging biomarkers of multiple sclerosis
多发性硬化症的计算成像生物标志物
基本信息
- 批准号:10187669
- 负责人:
- 金额:$ 37.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAmericanAtrophicBenchmarkingBiological MarkersBrainCentral Nervous System DiseasesChronicClinicalClinical ResearchClinical TrialsClinical assessmentsCognitive deficitsComputational TechniqueCounselingDataDiseaseDisease ManagementDisease MarkerDisease ProgressionFutureGoalsImageIndividualInflammatoryLabelLesionMRI ScansMagnetic Resonance ImagingManualsMeasurementMeasuresMethodsModelingMorphologyMultiple SclerosisOutcomePatientsPatternPerformancePopulationProceduresPrognosisProtocols documentationResearchScanningShapesSoftware ToolsSourceStructureTestingTimeTime Studybasebrain morphologycerebral atrophyclinical developmentclinical practiceclinical predictorscomputer studiescomputerized toolsdisabilitydisease diagnosisgray matterhigh riskimaging biomarkerimprovedin vivoindividual patientmorphometrymotor deficitmultiple sclerosis patientneural networkneuroimagingnovelpredictive modelingprospectivetoolwhite matter
项目摘要
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system that causes significant
cognitive and motor deficits and affects nearly half a million Americans and 2.5 million individuals worldwide. In
vivo MRI can detect the disease’s hallmark white matter lesions and their changes over time with a significantly
higher sensitivity than clinical assessment of disease activity. Furthermore, numerous studies have shown that
the atrophy accrual in various brain structures, assessed from serial MRI, is faster in patients with MS than in
healthy controls, and correlates with measures of disability. Therefore, the ability to reliably and efficiently
characterize the morphometry of white matter lesions, various neuroanatomical structures, and their changes
over time directly from in vivo MRI would be of great potential value for diagnosing disease, tracking
progression, and evaluating treatment.
While many automatic tools for segmenting white matter lesions from MR scans of MS patients have been
developed, these are typically tuned for specific research protocols only, and do not address the problem of
characterizing brain atrophy patterns in MS patients, where the presence of lesions is known to interfere with
atrophy estimation. Furthermore, computational neuroimaging efforts in MS have been focused almost
exclusively on demonstrating statistical associations on population levels, rather than on prediction models that
combine all sources of information simultaneously to compute the most sensitive biomarker in individual
patients.
In order to address these limitations, this project aims to (1) develop and validate automated tools for scanner-
adaptive segmentation of white matter lesions within their neuroanatomical context; (2) develop and deploy
spatially regularized models for predicting disability at the level of the individual patient; and (3) generalize,
validate, and apply the proposed segmentation and prediction tools in longitudinal settings. The successful
completion of this project will result in a set of computational imaging biomarkers in MS that correlate better
with clinical observation than currently available methods; publicly available software tools for robustly
segmenting longitudinal scans of MS patients across a wide range of imaging hardware and protocols; and a
more detailed characterization of the morphological and temporal dynamics underlying disease progression
and accumulation of disability in MS.
抽象的
多发性硬化症(MS)是中枢神经系统的慢性炎症性疾病,会引起明显的
认知和运动在全球范围内定义并影响了近50万美国人和250万人。在
体内MRI可以检测到该疾病的标志性白质病变及其随着时间的变化
比疾病活动的临床评估更高的灵敏度。此外,许多研究表明
通过串行MRI评估的各种大脑结构中的萎缩症在MS患者中比在
健康控制,与残疾措施相关。因此,可靠有效的能力
表征白质病变的形态计量学,各种神经解剖结构及其变化
随着时间的流逝,直接来自体内MRI的诊断疾病将具有巨大的潜在价值,跟踪
进展和评估治疗。
虽然许多用于从MS患者的MR扫描中细分白质病变的自动工具是
开发的,这些通常仅针对特定的研究协议进行调整,并且不会解决
表征MS患者中脑萎缩模式的表征,其中已知病变的存在会干扰
萎缩估计。此外,MS中的计算神经影像学工作几乎被重点
专门展示人口水平的统计关联,而不是预测模型
将所有信息来源组合起来,只是为了计算个体中最敏感的生物标志物
患者。
为了解决这些局限
在神经解剖学的环境下对白质病变的自适应分割; (2)开发和部署
通过空间调节的模型,用于预测个别患者水平的残疾; (3)概括,
验证并将提议的分割和预测工具应用于纵向设置。成功
该项目的完成将导致MS中的一组计算成像生物标志物,以更好地相关联
比目前可用的方法进行临床观察;公开可用的软件工具
将MS患者的纵向扫描分割为各种成像硬件和协议的纵向扫描;和
疾病进展的形态和临时动力学的更详细的表征
MS中残疾的积累。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Koen Van Leemput其他文献
Koen Van Leemput的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Koen Van Leemput', 18)}}的其他基金
Computational imaging biomarkers of multiple sclerosis
多发性硬化症的计算成像生物标志物
- 批准号:
10431903 - 财政年份:2019
- 资助金额:
$ 37.79万 - 项目类别:
Computational imaging biomarkers of multiple sclerosis
多发性硬化症的计算成像生物标志物
- 批准号:
10005502 - 财政年份:2019
- 资助金额:
$ 37.79万 - 项目类别:
Computational Imaging Biomarkers of Multiple Sclerosis
多发性硬化症的计算成像生物标志物
- 批准号:
10689038 - 财政年份:2019
- 资助金额:
$ 37.79万 - 项目类别:
Computational imaging biomarkers of multiple sclerosis
多发性硬化症的计算成像生物标志物
- 批准号:
9795538 - 财政年份:2019
- 资助金额:
$ 37.79万 - 项目类别:
Automated Segmentation of Subregions of the Medial Temporal Lobe in in vivo MRI
体内 MRI 内侧颞叶子区域的自动分割
- 批准号:
8642178 - 财政年份:2011
- 资助金额:
$ 37.79万 - 项目类别:
Automated Segmentation of Subregions of the Medial Temporal Lobe in in vivo MRI
体内 MRI 内侧颞叶子区域的自动分割
- 批准号:
8446307 - 财政年份:2011
- 资助金额:
$ 37.79万 - 项目类别:
Automated Segmentation of Subregions of the Medial Temporal Lobe in in vivo MRI
体内 MRI 内侧颞叶子区域的自动分割
- 批准号:
8101752 - 财政年份:2011
- 资助金额:
$ 37.79万 - 项目类别:
Automated Segmentation of Subregions of the Medial Temporal Lobe in in vivo MRI
体内 MRI 内侧颞叶子区域的自动分割
- 批准号:
8268142 - 财政年份:2011
- 资助金额:
$ 37.79万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 37.79万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 37.79万 - 项目类别:
Paid Sick Leave Mandates and Mental Healthcare Service Use
带薪病假规定和心理保健服务的使用
- 批准号:
10635492 - 财政年份:2023
- 资助金额:
$ 37.79万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 37.79万 - 项目类别:
Role of YB1 in health disparities in triple negative breast cancer
YB1 在三阴性乳腺癌健康差异中的作用
- 批准号:
10655943 - 财政年份:2023
- 资助金额:
$ 37.79万 - 项目类别: