SCH: INT: Inferring at home gait parameters of older adults using floor vibrations

SCH:INT:利用地板振动推断老年人的在家步态参数

基本信息

项目摘要

The United States population is growing older. There is an urgent need for tools to better connect health professionals with their patients and perform at-home assessments in an automated fashion. The long-term goal of this proposal is to discover the knowledge necessary to enable an always-on, non-intrusive, non-wearable smart system for automated at-home gait parameter estimation using floor vibrations. To achieve this vision, the proposal has the objective of connecting health professionals with older adults living independently through a smart system that estimates gait parameters using floor vibration. The aims to achieve this goal are to 1) determine at-home gait parameters as a function of time and space; 2) establish a digital identifier of the older adult based on gait parameters; and 3) correlate changes in at-home gait parameters, after considering spatial-temporal correlations, with changes in the well-being of the resident. The proposed research will advance the state-of-the-art in engineering, physical therapy and public health by testing the following hypotheses: 1) Floor vibration is a viable means to automatically and continuously determine gait parameters; 2) For healthy individuals living in an independent at-home setting, gait parameters will be consistent based on location in the home, time of the day and day of the week; and 3) For patients recently discharged from the hospital, recovery will correlate with improvements in their gait parameters. The testing of the hypotheses will be performed through five tasks: 1) Develop an automated system to capture floor vibration and extract gait parameters; 2) Validate the system in laboratory setting; 3) Collect data at participant’s homes; 4) Test the hypothesis that at-home gait parameters are consistent with time and space; 5) Test the hypothesis that improvement in gait parameters correlates improvement in health status of recently discharged patients. This research will be pursued by a group of interdisciplinary researchers in engineering and physical therapy with the support of an experienced geriatric physician and will advance the knowledge in signal processing techniques, estimation and validation of at-home gait parameters and their uncertainty, and relationship between changes at-home gait parameters and changes in health status. The proposed activities will have a significant impact on older adult care, the research community and the next generation of researchers and engineers stemming from: 1) improved health of older adults and reduced health care cost by early intervening and thus decreasing the readmission rate; 2) increased scientific literacy and public engagement through benchmark problems, interdisciplinary seminars, new courses and outreach activities; 3) the training of diverse convergence researchers competent in solving interdisciplinary problems, including underrepresented groups in STEM fields.
美国人口正在增长。迫切需要工具来更好地将卫生专业人员与患者联系起来,并以自动化的方式进行家庭评估。该提案的长期目标是发现实现始终在启用,不侵入的,不可磨损的智能系统的知识,以使用地板振动来自动化自动化的AIT参数估算。为了实现这一愿景,该提案的目的是通过智能系统将卫生专业人员与使用地板振动估算步态参数的智能系统独立生活联系起来。实现此目标的目的是1)确定在家步态参数作为时间和空间的函数; 2)根据步态参数建立老年人的数字标识符; 3)在考虑时空相关性之后,与居民的福祉变化相关联在家庭步态参数的变化。拟议的研究将通过测试以下假设来推动工程,物理疗法和公共卫生的最先进:1)地板振动是自动,连续确定符合参数的可行手段; 2)对于居住在独立家庭环境中的健康个人,基于一周中的一天和一天的时间,会计参数将是一致的; 3)对于最近从医院出院的患者,恢复将与其ACUIT参数的改善相关。假设的测试将通过五个任务进行:1)开发一个自动化系统以捕获地板振动并提取acuit参数; 2)在实验室环境中验证系统; 3)在参与者的家中收集数据; 4)检验以下假设:在家acuit参数与时间和空间一致; 5)检验以下假设:ACUIT参数的改善与最近出院患者的健康状况的改善有关。这项研究将由经验丰富的老年身体的一组跨学科研究人员在工程和物理治疗方面进行,并将促进信号处理技术,估计和验证在家庭步态参数及其不确定性以及其不确定性以及变化之间的关系的知识。拟议的活动将对老年人护理,研究界以及下一代的研究人员和工程师产生重大影响:1)改善老年人的健康状况,并通过早期介入而降低医疗保健成本,从而降低阅读率; 2)通过基准问题,跨学科的半手,新课程和外展活动来提高科学素养和公众参与; 3)培训潜水员融合研究人员有能力解决跨学科问题的培训,包括STEM领域中代表性不足的群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Juan Martin Caicedo其他文献

Juan Martin Caicedo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Juan Martin Caicedo', 18)}}的其他基金

SCH: INT: Inferring at home gait parameters of older adults using floor vibrations
SCH:INT:利用地板振动推断老年人的在家步态参数
  • 批准号:
    10412054
  • 财政年份:
    2019
  • 资助金额:
    $ 29.49万
  • 项目类别:
SCH: INT: Inferring at home gait parameters of older adults using floor vibrations
SCH:INT:利用地板振动推断老年人的在家步态参数
  • 批准号:
    10019453
  • 财政年份:
    2019
  • 资助金额:
    $ 29.49万
  • 项目类别:

相似海外基金

Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
  • 批准号:
    10619319
  • 财政年份:
    2023
  • 资助金额:
    $ 29.49万
  • 项目类别:
Automatic identification of early bone loss patterns from radiographs invisible to human eyes for early periodontal disease diagnosis and prevention
从人眼看不见的射线照片中自动识别早期骨质流失模式,用于早期牙周病的诊断和预防
  • 批准号:
    10723693
  • 财政年份:
    2023
  • 资助金额:
    $ 29.49万
  • 项目类别:
Quantitative characterization of the liver-pancreas axis in diabetes via multiparametric magnetic resonance elastography
通过多参数磁共振弹性成像定量表征糖尿病肝胰轴
  • 批准号:
    10718333
  • 财政年份:
    2023
  • 资助金额:
    $ 29.49万
  • 项目类别:
ContinuOuS Monitoring Tool for Delayed Cerebral IsChemia (COSMIC)
迟发性脑缺血持续监测工具 (COSMIC)
  • 批准号:
    10736589
  • 财政年份:
    2023
  • 资助金额:
    $ 29.49万
  • 项目类别:
Towards an inclusive genomic risk classification for acute myeloid leukemia (AML)
迈向急性髓系白血病 (AML) 的包容性基因组风险分类
  • 批准号:
    10752188
  • 财政年份:
    2023
  • 资助金额:
    $ 29.49万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了