Mechanisms that differentiate dendrite development from axon development
区分树突发育和轴突发育的机制
基本信息
- 批准号:9982446
- 负责人:
- 金额:$ 38.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3&apos Untranslated RegionsAxonAxonal TransportBinding ProteinsBiochemical GeneticsBiologicalCell Adhesion MoleculesCell NucleusCell SizeCellsDefectDendritesDevelopmentDown Syndrome Cell Adhesion MoleculeDrosophila genusDynein ATPaseGoalsGrowthHeterogeneous-Nuclear RibonucleoproteinsKnowledgeLabelLarvaLeadLeucine ZippersLocationMediatingMental disordersMissionModelingMolecularMolecular GeneticsMorphologyNatural regenerationNerve DegenerationNerve RegenerationNeurodevelopmental DisorderNeuronsNeurosciencesPathogenesisPathway interactionsPhosphorylationPhosphotransferasesPlayPoly(A)-Binding ProteinsPresynaptic TerminalsProcessProteinsProteomicsPublic HealthRNA interference screenRNA-Binding ProteinsRegulationResearchRoleSignal TransductionSpecificitySystemTechniquesTestingTranslational RegulationTranslationsUnited States National Institutes of HealthWorkaxon growthbasedesigngenetic approachhuman diseaseimprovedin vivoinjuredinnovationinsightnervous system disorderneural circuitneuron developmentnewborn neuronnovelretrograde transporttranscription factor
项目摘要
How a neuron’s dendrites and axons develop into distinct morphology—which is fundamental to the assembly
of neural circuits—is poorly understood. Understanding the mechanisms that differentiate dendrite and axon
development, therefore, is a vital goal in developmental neuroscience. Several regulatory mechanisms that are
dedicated to either dendrite-specific or axon-specific growth in vivo have been identified by taking advantage
of a Drosophila system. In addition, a molecular pathway that suppresses dendritic growth but promotes axonal
growth within the same neuron (i.e., a bimodal mechanism) has been located upstream of these dedicated
mechanisms. The bimodal regulation provides a unique mechanism for generating morphological diversity in
neurons, and is relevant for the design of effective strategies to regenerate an injured or diseased nervous
system. The long-term goal of this research is to define how a neuron develops into distinct subcellular parts
and how defects in this process lead to human disease. The objective of the proposed studies is to uncover the
molecular and cellular mechanisms of bimodal controls of dendritic and axonal growth. Recent studies have
shown that the evolutionarily conserved dual leucine zipper kinase/Wallenda (DLK/Wnd) pathway is a bimodal
regulator of dendritic and axonal growth, and that this pathway regulates the expression levels of a transcription
factor (Knot) and a cell adhesion molecule (Dscam) to control dendritic and axonal growth, respectively.
Preliminary studies suggest a novel concept: Translational regulation through RNA-binding proteins is at the
core of bimodal control of dendritic and axonal growth. The following model, which integrates specific molecules
and regulations with their spatial locations for bimodal control, will be tested: The DLK/Wnd pathway regulates
two distinct RNA-binding proteins to control PABP-dependent initiation of Dscam translation in axon terminals
for axonal growth and Knot expression in the cell body for dendritic growth, respectively. This model will be
tested by identifying (a) the molecular mechanism by which the DLK/Wnd pathway regulates axon-terminal
development and dendritic branch development and (b) the subcellular locations at which the DLK/Wnd
pathway regulates downstream factors to instruct the differential growth of dendrites and axons. The proposed
research is innovative because it proposes a novel concept in the differential development of dendrites and
axons and employs several innovative techniques that are well suited for this line of research. This research is
significant because it is expected to offer key insights into the coordination between dendritic and axonal
development, identify a critical role translational control plays in the differential development of dendrites and
axons, discover novel mechanisms by which the DLK/Wnd pathway functions in neurons, and provide insights
into the pathogenesis of neurodevelopmental disorders.
神经元的树突和轴突如何形成独特的形态 - 这是大会的基础
神经回路的理解很少。了解区分树突和轴突的机制
因此,发展是发育神经科学的至关重要目标。几种监管机制
通过利用优势,已经确定了专用于体内树突特异性或轴突特异性生长
果蝇系统。另外,一种抑制树突生长但促进轴突的分子途径
同一神经元内的生长(即双峰机制)已位于这些专用的上游
机制。双峰调节提供了一种独特的机制,可以产生形态学多样性
神经元,与设计有效策略的设计有关
系统。这项研究的长期目标是定义神经元发展如何分为不同的亚细胞部件
以及此过程中的缺陷如何导致人类疾病。拟议研究的目的是发现
树突状生长和轴突生长的双峰对照的分子和细胞机制。最近的研究
表明进化构成双亮氨酸拉链激酶/wallenda(DLK/WND)途径是双峰
树突状和轴突生长的调节剂,该途径调节转录的表达水平
因子(结)和细胞粘附分子(DSCAM)分别控制树突状和轴突生长。
初步研究表明了一个新颖的概念:通过RNA结合蛋白的翻译调节是
树突状和轴突生长的双峰控制的核心。以下模型,该模型整合了特定分子
和及其双峰控制空间位置的法规将进行测试:DLK/WND途径调节
两种不同的RNA结合蛋白控制轴突终端中DSCAM翻译的PABP依赖性计划
分别用于细胞体中的轴突生长和结的结。分别用于树突状生长。这个模型将是
通过识别(a)DLK/WND途径调节轴突末端的分子机制测试
开发和树突分支的发展以及(b)DLK/WND的亚细胞位置
途径调节下游因素以指导树突和轴突的差异生长。提议
研究具有创新性,因为它提出了一个新颖的概念,该概念在树突的差异发展和
轴突和员工非常适合这一研究的创新技术。这项研究是
重要的是因为预计它将对树突状和轴突之间的协调提供关键的见解
开发,确定转化控制在树突的差异发展中的关键作用和
轴突,发现DLK/WND途径在神经元中起作用并提供见解的新型机制
进入神经发育障碍的发病机理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BING YE其他文献
BING YE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BING YE', 18)}}的其他基金
Mechanisms that underlie cross-modal sensory plasticity
跨模式感觉可塑性的机制
- 批准号:
9764513 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Mechanisms that underlie cross-modal sensory plasticity - Diversity Research Supplements to Promote Diversity in Health-Related Research
跨模式感觉可塑性的机制 - 促进健康相关研究多样性的多样性研究补充
- 批准号:
10404187 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Mechanisms that underlie cross-modal sensory plasticity
跨模式感觉可塑性的机制
- 批准号:
10200909 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Mechanisms that underlie cross-modal sensory plasticity
跨模式感觉可塑性的机制
- 批准号:
10440450 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Mechanisms that differentiate dendrite development from axon development
区分树突发育和轴突发育的机制
- 批准号:
9446382 - 财政年份:2017
- 资助金额:
$ 38.21万 - 项目类别:
Mechanisms that differentiate dendrite development from axon development
区分树突发育和轴突发育的机制
- 批准号:
10217979 - 财政年份:2017
- 资助金额:
$ 38.21万 - 项目类别:
Mechanisms underlying defective cortical development in Down syndrome
唐氏综合症皮质发育缺陷的机制
- 批准号:
9111290 - 财政年份:2016
- 资助金额:
$ 38.21万 - 项目类别:
The role of the secretory pathway in ethanol-induced neural tissue injury
分泌途径在乙醇诱导的神经组织损伤中的作用
- 批准号:
8699608 - 财政年份:2013
- 资助金额:
$ 38.21万 - 项目类别:
相似海外基金
Identifying the Mechanisms and Localization of Activity-Dependent CaMKII Synthesis
确定活性依赖性 CaMKII 合成的机制和定位
- 批准号:
10750472 - 财政年份:2023
- 资助金额:
$ 38.21万 - 项目类别:
Examining the regulation of resident mRNAs in myelinplasticity
检查常驻 mRNA 对髓鞘可塑性的调节
- 批准号:
10640732 - 财政年份:2023
- 资助金额:
$ 38.21万 - 项目类别:
New cell biology tools to study myelin development, dynamics, and disease
研究髓磷脂发育、动力学和疾病的新细胞生物学工具
- 批准号:
10649184 - 财政年份:2023
- 资助金额:
$ 38.21万 - 项目类别:
Defining proteostasis networks in axon segments
定义轴突段中的蛋白质稳态网络
- 批准号:
10626162 - 财政年份:2022
- 资助金额:
$ 38.21万 - 项目类别:
Modulating miR-218 in human motor neurons using assembloids
使用组合体调节人类运动神经元中的 miR-218
- 批准号:
10525638 - 财政年份:2022
- 资助金额:
$ 38.21万 - 项目类别: