Understanding the sequence and structural determinants of phase behavior of ALS-causing proteins
了解 ALS 致病蛋白相行为的序列和结构决定因素
基本信息
- 批准号:10182841
- 负责人:
- 金额:$ 64.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesivesAffinityAgingAmyotrophic Lateral SclerosisAromatic Amino AcidsAutomobile DrivingBehaviorBiochemicalBiophysicsBrainDegenerative DisorderDevelopmentDiseaseDisease ProgressionElementsGeneticGoalsHeterogeneous-Nuclear RibonucleoproteinsHydrogen BondingInvestigationLeadLifeLinkLiquid substanceLocalesLocationMediatingMicroscopicModelingMolecularMutationNatureNeurodegenerative DisordersOrganellesPathogenesisPathologicPatternPhasePhase TransitionPhysicsPolyribosomesPositioning AttributeProcessProteinsRNARNA Recognition MotifRNA-Binding ProteinsRoleSideSolidSolventsSpace ModelsSpinal CordStressStructureSystemTemperatureTestingTherapeuticTherapeutic InterventionTranslationsUrsidae FamilyVertebral columnWorkarmbasecohesioncrosslinkdesigndisease-causing mutationdriving forceeffective therapyexperimental studyinsightinterestmacromoleculemembermotor neuron degenerationmutantorganizational structurepredictive modelingprotein TDP-43protein aggregationscaffoldsimulationsolid statestress granuletheories
项目摘要
Summary
Amyotrophic lateral sclerosis (ALS) is a life-threatening, neurodegenerative disease that causes the
degeneration of motor neurons in the brain and spinal cord. There are currently neither a cure nor effective
treatments to slow progression. However, recent new genetic, biochemical and biophysical evidence implicates
stress granules as crucibles for disease development. Stress granules are membraneless organelles, also called
biomolecular condensates, which form via liquid-liquid phase separation (LLPS) of RNA-binding proteins and
RNA. Mutations in RNA-binding proteins convert liquid-like stress granules into solid inclusions. Prolonged stress
granule assembly can result in similar effects. These observations point to new opportunities for therapeutic
interventions if key open questions regarding the nature of liquid vs. solid assemblies can be answered. We will
thus test the overarching hypothesis, which is based on above observations, that mutations in RNA-binding
proteins change the driving forces for phase separation, the dynamical arrest of the liquid condensates and the
ability of the condensates to promote the formation of protein fibrils. Our proposed studies will thus focus on the
physics of phase separation of RNA-binding proteins, specifically on their intrinsically disordered low-complexity
domains (LCDs) that are sufficient for mediating phase separation and are the typical locations of disease
mutations. We will use the LCD of hnRNPA1 as an archetypal member of the class of ALS-associated RNA-
binding proteins and will extend our studies also to the LCD of FUS. Mittag and Pappu have recently developed
a stickers-and-spacers model that is based on the identification of transient, cohesive interactions amongst
aromatic amino acid residues as providing the main driving force for phase separation. The aromatic residues
are the stickers in this model, the spacers are the residues that connect the stickers. The model enables the
quantitative prediction of full coexistence curves as a function of temperature and, importantly, resulted in a
conceptual advancement of our understanding of how phase separation is encoded in LCDs. The complimentary
expertise of Mittag and Pappu will now bring to bear a combination of biophysical experiments, computation and
theory on the following three specific aims: (1) To extend the stickers-and-spacers model by quantifying the
interplay among different types of stickers and spacers. (2) To test the hypothesis that disease causing mutations
within LCDs of ALS-causing RNA-binding proteins cause dynamically arrested phase transitions. (3) To uncover
the interplay among sidechain and backbone interactions and their contributions to spatial organization of LCDs
within dense phases. Our results will enable quantitative predictions of the effects of ALS-associated mutants
on phase behavior. We will obtain a clear understanding of how sequence-specific phase diagrams contribute
to the dynamics of phase separation and aging phenomena. We will identify the types of interactions underlying
liquid-like and solid-like dense phases. These results will have a direct bearing on therapeutic interventions
against the functional disruptions that are likely to be caused by dynamically arrested phase separation.
概括
肌萎缩侧索硬化症 (ALS) 是一种危及生命的神经退行性疾病,会导致
大脑和脊髓中运动神经元的退化。目前尚无治愈方法,也没有有效的方法
减缓进展的治疗。然而,最近新的遗传、生化和生物物理证据表明
应激颗粒作为疾病发展的坩埚。应激颗粒是无膜细胞器,也称为
生物分子缩合物,通过 RNA 结合蛋白的液-液相分离 (LLPS) 形成
核糖核酸。 RNA 结合蛋白的突变将液体状应力颗粒转化为固体内含物。长期压力
颗粒组装可以产生类似的效果。这些观察结果为治疗提供了新的机会
如果可以回答有关液体与固体组件性质的关键开放问题,则进行干预。我们将
因此检验基于上述观察的总体假设,即 RNA 结合突变
蛋白质改变相分离的驱动力、液体冷凝物的动态停止以及
缩合物促进蛋白质原纤维形成的能力。因此,我们提出的研究将集中于
RNA 结合蛋白的相分离物理学,特别是其本质上无序的低复杂性
足以介导相分离并且是疾病的典型位置的域(LCD)
突变。我们将使用 hnRNPA1 的 LCD 作为 ALS 相关 RNA 类的原型成员
结合蛋白,并将我们的研究扩展到 FUS 的 LCD。 Mittag 和 Pappu 最近开发了
贴纸和垫片模型基于识别之间的瞬时、内聚相互作用
芳香族氨基酸残基为相分离提供主要驱动力。芳香族残基
是该模型中的贴纸,垫片是连接贴纸的残留物。该模型使得
定量预测完全共存曲线作为温度的函数,重要的是,结果是
我们对 LCD 中相分离编码方式的理解在概念上取得了进步。免费的
米塔格和帕普的专业知识现在将结合生物物理实验、计算和
关于以下三个具体目标的理论:(1)通过量化贴纸和垫片模型来扩展贴纸和垫片模型
不同类型的贴纸和垫片之间的相互作用。 (2) 检验疾病引起突变的假设
LCD 中引起 ALS 的 RNA 结合蛋白会导致动态停滞的相变。 (3) 揭开
侧链和主干相互作用之间的相互作用及其对 LCD 空间组织的贡献
在致密相内。我们的结果将能够定量预测 ALS 相关突变体的影响
关于相行为。我们将清楚地了解特定序列的相图如何发挥作用
相分离和老化现象的动力学。我们将确定潜在的交互类型
液体状和固体状的致密相。这些结果将直接影响治疗干预
防止动态阻止相分离可能引起的功能破坏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanja Mittag其他文献
Tanja Mittag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanja Mittag', 18)}}的其他基金
Understanding the sequence and structural determinants of phase behavior of ALS-causing proteins
了解 ALS 致病蛋白相行为的序列和结构决定因素
- 批准号:
10558635 - 财政年份:2021
- 资助金额:
$ 64.38万 - 项目类别:
The role of weak multivalent interactions and phase separation in SPOP tumor suppressor function
弱多价相互作用和相分离在SPOP肿瘤抑制功能中的作用
- 批准号:
10543538 - 财政年份:2015
- 资助金额:
$ 64.38万 - 项目类别:
Multivalent higher-order complexes regulate ubiquitination in Hedgehog signaling
多价高阶复合物调节 Hedgehog 信号传导中的泛素化
- 批准号:
8986797 - 财政年份:2015
- 资助金额:
$ 64.38万 - 项目类别:
The role of weak multivalent interactions and phase separation in SPOP tumor suppressor function
弱多价相互作用和相分离在SPOP肿瘤抑制功能中的作用
- 批准号:
10316227 - 财政年份:2015
- 资助金额:
$ 64.38万 - 项目类别:
Multivalent higher-order complexes regulate ubiquitination in Hedgehog signaling
多价高阶复合物调节 Hedgehog 信号传导中的泛素化
- 批准号:
8800305 - 财政年份:2015
- 资助金额:
$ 64.38万 - 项目类别:
Multivalent higher-order complexes regulate ubiquitination in Hedgehog signaling
多价高阶复合物调节 Hedgehog 信号传导中的泛素化
- 批准号:
9187013 - 财政年份:2015
- 资助金额:
$ 64.38万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多场景应用的药物-靶标结合亲和力预测研究
- 批准号:62371403
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Novel nanoparticles to stimulate therapeutic angiogenesis in peripheral arterial disease
刺激外周动脉疾病治疗性血管生成的新型纳米颗粒
- 批准号:
10756875 - 财政年份:2022
- 资助金额:
$ 64.38万 - 项目类别:
Understanding the sequence and structural determinants of phase behavior of ALS-causing proteins
了解 ALS 致病蛋白相行为的序列和结构决定因素
- 批准号:
10558635 - 财政年份:2021
- 资助金额:
$ 64.38万 - 项目类别:
Biofunctional sealant with peptides to extend lifespans of Class V restorations
含有肽的生物功能密封剂可延长 V 类修复体的使用寿命
- 批准号:
9907037 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
Biofunctional sealant with peptides to extend lifespans of Class V restorations
含有肽的生物功能密封剂可延长 V 类修复体的使用寿命
- 批准号:
10371864 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别:
Biofunctional sealant with peptides to extend lifespans of Class V restorations
含有肽的生物功能密封剂可延长 V 类修复体的使用寿命
- 批准号:
10021400 - 财政年份:2020
- 资助金额:
$ 64.38万 - 项目类别: