Mechanisms governing myosin turnover and exchange in vivo.
体内控制肌球蛋白周转和交换的机制。
基本信息
- 批准号:10182478
- 负责人:
- 金额:$ 47.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAmino AcidsAnimal ModelAnimalsBiochemicalBiological AssayBiophysical ProcessBiophysicsCardiacCardiac MyosinsCytosolDataElectron MicroscopyEquilibriumExhibitsFilamentFluorescence Recovery After PhotobleachingHalf-LifeHeadHeartHumanIndividualIsotope LabelingKnowledgeLabelMacromolecular ComplexesMass Spectrum AnalysisModelingMolecularMolecular ConformationMusMuscleMyocardiumMyosin ATPaseNatureOrganPathologyPharmaceutical PreparationsPolymersPropertyProteinsResolutionSarcomeresStable Isotope LabelingStochastic ProcessesStriated MusclesStructureTestingThick FilamentUrsidae FamilyViralViral Proteinsconfocal imagingdesignin vivoinhibitor/antagonistinnovationinsightmicroscopic imagingmonomermouse modelmuscle formmuscular structuremuscular systemnovelnovel therapeuticspreventprotein expressionreduced muscle masssingle moleculesmall molecule
项目摘要
ABSTRACT
Striated muscle myosin is highly organized into thick filaments that bear the molecular forces generated by the
myosin heads. While thick filament structure and stability are essential for contractility, the mechanisms that
allow fully developed muscles to replace myosin molecules while maintaining contractile fidelity are unclear.
Critical questions include; what are the temporal dynamics of myosin synthesis and degradation (i.e. turnover)
and how are molecules selected for degradation? Do striated myosin molecules exist in a dynamic equilibrium
with thick filaments to allow for their exchange out of and into thick filaments? If thick filament structure is
dynamic, what are the molecular mechanisms governing this equilibrium? Most importantly, is this mechanism
tunable to modify striated muscle structure and/or function? We will address these questions in an adult mouse
model in three aims. Our overall hypothesis is that myosin turnover is a stochastic process which involves the
exchange of individual myosin molecules between a cytosolic pool of monomers and thick filaments, by a
mechanism governed by the folding of the monomers within the cytosol. Aim 1 will define the turnover rate of
cardiac myosin in our model and determine whether myosin degradation occurs via a stochastic (i.e. random)
mechanism by using a combination of isotope labeling strategies and mass spectrometry. Aim 2 will test the
hypothesis that the organization of striated muscle myosin is highly dynamic to allow for the rapid exchange of
individual molecules between thick filaments and a cytosolic pool of monomers by virally labeling myosin with a
fluorescent tag in vivo and examining the mobility of the myosin within hearts using multiphoton fluorescence
recovery after photobleaching. Aim 3 will test the hypotheses that the structural conformation (i.e. folded vs.
extended) of individual myosin molecules in the cytosol regulates the exchange of myosin molecules between
pools. Aim 3 will take advantage of a drug that folds myosin and reduces cardiac mass. We will test our overall
hypothesis that tuning myosin folding, affects the effective concentration of myosin with the cytosol, and
regulates its availability for degradation. The proposed studies will be the first to examine myosin turnover and
macromolecular exchange in a striated muscle system in any intact animal model. The results will provide
conceptual innovation that fully developed muscle is designed in such a way to allow for structural
rearrangement of myosin on a minute-to-minute timescale. The mechanistic findings have the potential to add
to the current paradigm regarding thick filament structure and explain how striated muscle is maintained from
the single molecule to whole organ level. The new knowledge gained may allow us to take advantage of this
mechanism for tuning striated muscle structure and/or function in whole animals.
抽象的
条纹肌肉肌球蛋白高度组织成厚细丝,这些细丝具有由
肌球蛋白头。虽然较厚的细丝结构和稳定性对于收缩性至关重要
尚不清楚允许完全发育的肌肉替代肌球蛋白分子,同时保持收缩的保真度。
关键问题包括;肌球蛋白合成和降解的时间动力学是什么(即营业额)
如何选择分子降解?横纹肌球蛋白分子是否存在于动态平衡中
用厚的细丝允许它们从厚细丝中交换和交换?如果较厚的细丝结构是
动态,控制这种平衡的分子机制是什么?最重要的是这种机制
可调以修饰横纹肌的结构和/或功能?我们将在成年鼠标中解决这些问题
模型三个目标。我们的总体假设是,肌球蛋白更新是一个随机过程,涉及
通过A之间的单个胞质池之间的单个肌球蛋白分子交换
由细胞质内单体折叠的机制。 AIM 1将定义周转率
我们模型中的心脏肌球蛋白,并确定肌球蛋白降解是否通过随机发生(即随机)发生
通过使用同位素标记策略和质谱法的组合来机理。 AIM 2将测试
假设条纹肌肉肌球蛋白的组织具有高度动态性,可以快速交流
厚细丝和单体胞质池之间的单个分子通过用A的肌球蛋白标记
体内荧光标签,并使用多光子荧光检查心脏内肌球蛋白的迁移率
光漂白后恢复。 AIM 3将检验结构构象的假设(即折叠Vs.
细胞质中单个肌球蛋白分子的扩展)调节在之间调节肌球蛋白分子之间的交换
游泳池。 AIM 3将利用折叠肌球蛋白并减少心脏质量的药物。我们将测试我们的整体
假设调节肌球蛋白折叠,影响肌球蛋白与细胞质的有效浓度,并且
调节其降解的可用性。拟议的研究将是第一个检查肌球蛋白更新的研究,并且
在任何完整动物模型中,横纹肌系统中的大分子交换。结果将提供
完全发育的肌肉的概念创新以这种方式设计
肌球蛋白在分钟到分钟的时间尺度上重新排列。机械发现有可能添加
目前有关较厚细丝结构的范式,并解释如何从
单个分子到整个器官水平。获得的新知识可能使我们能够利用这一点
整个动物中调节肌肉结构和/或功能的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Joseph Previs其他文献
Michael Joseph Previs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Joseph Previs', 18)}}的其他基金
Mechanisms governing myosin turnover and exchange in vivo.
体内控制肌球蛋白周转和交换的机制。
- 批准号:
10589816 - 财政年份:2021
- 资助金额:
$ 47.69万 - 项目类别:
Mechanisms governing myosin turnover and exchange in vivo.
体内控制肌球蛋白周转和交换的机制。
- 批准号:
10375545 - 财政年份:2021
- 资助金额:
$ 47.69万 - 项目类别:
Molecular Modulation of Actomyosin Mechanics by Cardiac Myosin-Binding Protein C
心肌肌球蛋白结合蛋白 C 对肌动球蛋白力学的分子调节
- 批准号:
8762567 - 财政年份:2014
- 资助金额:
$ 47.69万 - 项目类别:
Molecular Modulation of Actomyosin Mechanics by Cardiac Myosin-Binding Protein C
心肌肌球蛋白结合蛋白 C 对肌动球蛋白力学的分子调节
- 批准号:
8919943 - 财政年份:2014
- 资助金额:
$ 47.69万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 47.69万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 47.69万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 47.69万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 47.69万 - 项目类别:
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
- 批准号:
10595270 - 财政年份:2023
- 资助金额:
$ 47.69万 - 项目类别: