Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
基本信息
- 批准号:9982190
- 负责人:
- 金额:$ 123.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-10 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:Acinetobacter baumanniiAddressAlgorithmic SoftwareAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsArchitectureBacteriaBiochemicalBiochemistryBiological AssayBiological AvailabilityCellsChemicalsCommunitiesDataData SetDetectionDevelopmentEffectivenessEscherichia coliGram-Negative BacteriaGram-Negative Bacterial InfectionsHumanIncidenceIndividualInfectionInterdisciplinary StudyKineticsKnock-outLabelLeadLibrariesMachine LearningMammalian CellMass Spectrum AnalysisMeasurementMeasuresMembraneMicrobiologyModelingOralPartner in relationshipPenetrationPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPropertyPseudomonas aeruginosaPublic HealthQuantitative EvaluationsQuantitative Structure-Activity RelationshipRoleStructureTestingVariantanalogbasebiophysical modelcell envelopecheminformaticscombatcomputerized toolsdensitydesigndrug discoveryefflux pumphigh throughput screeningimprovedinhibitor/antagonistinterdisciplinary approachkinetic modellead optimizationlearning networkmultidisciplinaryneural networknovelpredictive modelingprogramsprospectivepublic health relevancescreeningsmall moleculesmall molecule librariessuccesstool
项目摘要
PROJECT SUMMARY
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria.
Antibiotic-resistant Gram-negative bacterial infections are increasing in incidence and novel antibiotics are
urgently needed to combat this growing threat to public health. A major roadblock to the development of novel
antibiotics is our poor understanding of the structural features of small molecules that correlate with bacterial
penetration and efflux. As a result, while potent biochemical inhibitors can often be identified for new targets,
developing them into compounds with whole-cell antibacterial activity has proven challenging.
To address this critical problem, we propose herein a comprehensive, multidisciplinary approach to develop
quantitative models to predict small-molecule penetration and efflux in Gram-negative bacteria. We have
pioneered a general platform for systematic, quantitative evaluation of small-molecule accumulation in bacteria,
using label-free LC-MS/MS detection and multivariate cheminformatic analysis. We have also developed
unique isogenic strain sets of wild-type, hyperporinated, efflux-knockout, and doubly-compromised E. coli,
P. aeruginosa, and A. baumannii that allow us to dissect the individual contributions of outer/inner membrane
penetration and active efflux to net accumulation, using a kinetic model that accurately recapitulates available
experimental data. Moreover, we have developed machine learning and neural network approaches to QSAR
(quantitative structure–activity relationship) modeling of pharmacological properties that will now be used to
develop predictive cheminformatic models for Gram-negative accumulation, penetration, and efflux.
This project will be carried out by a multidisciplinary SPEAR-GN Project Team (Small-molecule Penetration &
Efflux in Antibiotic-Resistant Gram-Negatives, “speargun”) involving the labs of Derek Tan (MSK, PI), Helen
Zgurskaya (OU, PI), Bradley Sherborne (Merck, Lead Collaborator), Valentin Rybenkov (OU, Co-I), Adam
Duerfeldt (OU, Co-I), Carl Balibar (Merck, Collaborator), and David McLaren (Merck, Collaborator), comprising
extensive combined expertise in organic and diversity-oriented synthesis, biochemistry, microbiology, high-
throughput screening, mass spectrometry, biophysical modeling, cheminformatics, and medicinal chemistry.
Herein, we will design and synthesize chemical libraries with diverse structural and physicochemical
properties; analyze their accumulation in the isogenic strain sets in both high-throughput and high-density
assay formats; extract kinetic parameters for penetration and efflux from the resulting experimental datasets;
develop and validate robust QSAR models for accumulation, penetration, and efflux; and demonstrate the utility
of these models in medicinal chemistry campaigns to develop novel Gram-negative antibiotics against three
targets. This project will provide a major advance in the field of antibacterial drug discovery, providing powerful
enabling tools to the scientific community to address this major threat to public health.
项目摘要
革兰氏阴性细菌中小分子积累的预测模型。
抗生素持续的革兰氏阴性细菌感染的发生率正在增加,而新型抗生素是
迫切需要打击这种日益严重的公共卫生威胁。小说发展的主要障碍
抗生素是我们对与细菌相关的小分子的结构特征的不良理解
穿透和外排。结果,尽管通常可以针对新目标确定潜在的生化抑制剂,但
将它们发展成具有全细胞抗菌活性的化合物已被证明是挑战。
为了解决这个关键问题,我们在此提出了一种全面的多学科方法来发展
定量模型,以预测革兰氏阴性细菌中小分子渗透和外排。我们有
开创了一个通用平台,用于对细菌中小分子积累进行系统的定量评估,
使用无标签的LC-MS/MS检测和多元化学法分析。我们也发展了
野生型,高孢子,外排敲击和双重促进的大肠杆菌的独特的等源性应变集,
铜绿假单胞菌和A. baumannii,使我们能够剖析外部/内膜的个体贡献
使用动力学模型准确地概括可用的动力学模型
实验数据。此外,我们已经开发了机器学习和神经网络方法
(定量结构 - 活性关系)现已用于使用的药物的建模
开发用于革兰氏阴性积累,渗透和外排的预测性化学图案模型。
该项目将由多学科的Spear-GN项目团队(小分子渗透和
抗生素耐药的革兰氏阴性阴性中的外排,涉及Derek Tan(MSK,PI)的实验室的“ Speargun”),Helen
Zgurskaya(OU,PI),Bradley Sherborne(默克公司,首席合作者),Valentin Rybenkov(OU,Co-I),Adam
Duerfeldt(OU,Co-I),Carl Balibar(默克,合作者)和David McLaren(Merck,合作者),完成
有机和多样性的合成,生物化学,微生物学,高 -
吞吐量筛选,质谱,生物物理建模,化学信息学和医学化学。
本文中,我们将设计和合成具有潜水员结构和物理的化学库
特性;分析它们在高通量和高密度中的等源性应变集中的积累
测定格式;从所得的实验数据集中提取动力学参数,以渗透和排出;
开发和验证可靠的QSAR模型以积累,穿透和外排;并展示实用程序
这些模型在药物化学运动中开发了针对三种新颖的革兰氏阴性抗生素
目标。该项目将在抗菌药物发现领域提供重大进步,从而提供强大
使科学界的工具能够应对公共卫生的这一主要威胁。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEREK S TAN其他文献
DEREK S TAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEREK S TAN', 18)}}的其他基金
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
10618939 - 财政年份:2020
- 资助金额:
$ 123.93万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
10414800 - 财政年份:2020
- 资助金额:
$ 123.93万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
10226047 - 财政年份:2018
- 资助金额:
$ 123.93万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
10460988 - 财政年份:2018
- 资助金额:
$ 123.93万 - 项目类别:
Predictive Models for Small-Molecule Accumulation in Gram-Negative Bacteria
革兰氏阴性细菌中小分子积累的预测模型
- 批准号:
9761970 - 财政年份:2018
- 资助金额:
$ 123.93万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
9306134 - 财政年份:2015
- 资助金额:
$ 123.93万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
8935325 - 财政年份:2015
- 资助金额:
$ 123.93万 - 项目类别:
Tri-Institutional PhD Program in Chemical Biology
化学生物学三机构博士项目
- 批准号:
9098769 - 财政年份:2015
- 资助金额:
$ 123.93万 - 项目类别:
Rational Design of Adenylation Enzyme Inhibitors
腺苷酸化酶抑制剂的合理设计
- 批准号:
8675862 - 财政年份:2012
- 资助金额:
$ 123.93万 - 项目类别:
Small Molecule Inhibitors of P. aeruginosa Quinolone (Pqs) Quorum Sensing
铜绿假单胞菌喹诺酮 (Pqs) 群体感应的小分子抑制剂
- 批准号:
8268842 - 财政年份:2012
- 资助金额:
$ 123.93万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 123.93万 - 项目类别:
Bioethical Issues Associated with Objective Behavioral Measurement of Children with Hearing Loss in Naturalistic Environments
与自然环境中听力损失儿童的客观行为测量相关的生物伦理问题
- 批准号:
10790269 - 财政年份:2023
- 资助金额:
$ 123.93万 - 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
- 批准号:
10810913 - 财政年份:2023
- 资助金额:
$ 123.93万 - 项目类别:
Glove-based Tactile Streaming of Braille Characters and Digital Images for the Visually Impaired
为视障人士提供基于手套的盲文字符和数字图像触觉流传输
- 批准号:
10601900 - 财政年份:2023
- 资助金额:
$ 123.93万 - 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 123.93万 - 项目类别: