Kinetic regulation of mycobacterial transcription
分枝杆菌转录的动力学调控
基本信息
- 批准号:9982385
- 负责人:
- 金额:$ 39.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelBacteriaBindingBiochemical PathwayBiological AssayBiological ModelsBiologyBiophysical ProcessBiophysicsCessation of lifeChromosomesComplexDNADNA BindingDNA-Directed RNA PolymeraseDataDevelopmentDiseaseDrug resistanceElementsEscherichia coliFutureGene ExpressionGenesGenetic TranscriptionGenus MycobacteriumHealthHoloenzymesHousekeepingHypoxiaIn VitroIndividualInfectionKineticsLeadMeasuresMediatingModelingMolecularMulti-Drug ResistanceMultidrug-Resistant TuberculosisMycobacterium tuberculosisOutcomeOxidative StressPF4 GenePathogenesisPathogenicityPeptide Initiation FactorsPlayPredictive FactorProductionPromoter RegionsPropertyPublic HealthRNARNA Polymerase InhibitorRegulationReportingRepressionResolutionRibosomal RNARoleSecuritySigma FactorSpecificityStarvationStressTechniquesTestingTherapeuticTimeTranscriptTranscription InitiationTranscriptional RegulationTuberculosisWorkWorld Health Organizationbasebiological adaptation to stresscombatdrug discoveryexperienceexperimental studygenome-wideglobal healthhuman pathogenin vivoinnovationinsightkinetic modelmycobacterialnovel therapeuticspromoterresistant strainresponsesingle moleculestop flow techniquetranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Transcription in all bacteria is achieved by a single core RNA polymerase (RNAP) which associates with
a σ-subunit to form an RNAP holoenzyme, bind DNA promoter sequences, and initiate transcription. Most
transcriptional regulation occurs at the level of initiation and transcription factors mediate this regulation by
directly modulating the interaction between RNAP and the promoter, manipulating the rates of interconversion
between closed and open RNAP-promoter complexes (RPc and RPo respectively), or affecting the rate of
promoter escape. We have recently shown that transcription in Mycobacterium tuberculosis (Mtb) is considerably
different from that in the model bacterium E. coli in that Mtb RNAP forms inherently unstable RPo complexes as
compared to E. coli RNAP. Furthermore, Mtb possess two essential transcription factors, CarD and RbpA, that
are absent from E. coli. We have previously shown that these factors stabilize mycobacterial RPo, albeit through
different mechanisms, and are able to cooperatively and dramatically change the kinetics of Mtb RNAP RPo
formation such that it mirrors those of E. coli RNAP. We have been studying CarD and RbpA activities in vivo
and in vitro and have proposed kinetic mechanisms for each factor in the context of the housekeeping σA RNAP
holoenzyme on the ribosomal RNA (rRNA) rrnAP3 promoter. Our studies have been instrumental in
understanding the fundamental properties of these essential transcription factors and have revealed insight into
unique properties of Mtb transcription. However, CarD and RbpA activities have only been examined on a handful
of mycobacterial promoters with sequence elements similar to promoters found in E. coli even though in general
Mtb promoters differ considerably from those in E. coli. In addition, CarD has only been studied in the context of
the σA RNAP holoenzyme, despite the importance of the 12 Mtb alternative σ-factors that regulate the bacterias
response to stresses encounter during pathogenesis. Thus, we still do not know how CarD and RbpA affect
expression of the vast majority of genes within the Mtb chromosome and how this regulation contributes to
viability under the conditions Mtb experiences during infection. In this project, we will measure the kinetics of Mtb
initiation using rapid-mixing stopped-flow techniques as well as high-resolution single-molecule approaches to
address how CarD and RbpA differentially affect gene expression from diverse promoters and in the context of
alternative holoenzymes essential for bacterial stress responses enacted during infection. Our Aims are to: (1)
Test the hypothesis that CarD and RbpA can either activate or repress transcription depending on promoter
context, (2) Expand our kinetic model of factor-dependent mycobacterial transcription initiation, and (3)
Determine how CarD and RbpA are influenced by alternative sigma-factors. Completion of these Aims will result
in a holistic view of Mtb transcriptional regulation genome-wide and will expand paradigms of prokaryotic
transcription beyond traditional model systems. These studies will also provide insight into mechanisms of Mtb
pathogenesis that may inform the development of future therapeutic strategies.
项目概要/摘要
所有细菌中的转录都是通过单核 RNA 聚合酶 (RNAP) 实现的,该酶与
σ 亚基形成 RNAP 全酶,结合 DNA 启动子序列并启动转录。
转录调节发生在起始水平,转录因子通过以下方式介导这种调节:
直接调节 RNAP 和启动子之间的相互作用,操纵相互转化的速率
关闭和开放的 RNAP 启动子复合物(分别为 RPc 和 RPo)之间,或影响
我们最近发现结核分枝杆菌 (Mtb) 中的转录量相当大。
与模型细菌大肠杆菌中的不同之处在于 Mtb RNAP 形成固有不稳定的 RPo 复合物,如
与大肠杆菌 RNAP 相比,Mtb 拥有两种重要的转录因子:CarD 和 RbpA。
我们之前已经证明这些因子可以稳定分枝杆菌 RPo,但是通过
不同的机制,并且能够协同并显着改变 Mtb RNAP RPo 的动力学
我们一直在研究 CarD 和 RbpA 的体内活性。
和体外,并提出了在管家 σA RNAP 背景下每个因素的动力学机制
核糖体 RNA (rRNA) rrnAP3 启动子上的全酶 我们的研究在这方面发挥了重要作用。
了解这些重要转录因子的基本特性,并揭示了
Mtb 转录的独特特性 然而,CarD 和 RbpA 活性仅在少数情况下进行了检查。
具有与大肠杆菌中发现的启动子相似的序列元件的分枝杆菌启动子,尽管一般而言
Mtb 启动子与大肠杆菌中的启动子有很大不同,此外,CarD 仅在 Mtb 背景下进行了研究。
σA RNAP 全酶,尽管调节细菌的 12 个 Mtb 替代 σ 因子很重要
因此,我们仍然不知道 CarD 和 RbpA 如何影响。
Mtb 染色体内绝大多数基因的表达以及这种调节如何有助于
在感染期间 Mtb 经历的条件下的生存能力 在本项目中,我们将测量 Mtb 的动力学。
使用快速混合停流技术以及高分辨率单分子方法引发
解决 CarD 和 RbpA 如何差异性地影响不同启动子的基因表达以及在
感染过程中细菌应激反应所必需的替代全酶我们的目标是:(1)
检验 CarD 和 RbpA 可以根据启动子激活或抑制转录的假设
上下文,(2)扩展我们的因子依赖性分枝杆菌转录起始的动力学模型,以及(3)
确定 CarD 和 RbpA 如何受到替代 sigma 因子的影响 完成这些目标将导致结果。
从全基因组范围内 Mtb 转录调控的整体角度来看,并将扩展原核生物的范式
这些研究还将提供对 Mtb 机制的深入了解。
发病机制可能为未来治疗策略的发展提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric A Galburt其他文献
Eric A Galburt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric A Galburt', 18)}}的其他基金
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10581660 - 财政年份:2022
- 资助金额:
$ 39.38万 - 项目类别:
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10797632 - 财政年份:2022
- 资助金额:
$ 39.38万 - 项目类别:
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10330862 - 财政年份:2022
- 资助金额:
$ 39.38万 - 项目类别:
Kinetic regulation of mycobacterial transcription
分枝杆菌转录的动力学调控
- 批准号:
9810951 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Kinetic regulation of mycobacterial transcription
分枝杆菌转录的动力学调控
- 批准号:
10026742 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
INVESTIGATING NOVEL MECHANISMS OF TRANSCRIPTION INITIATION REGULATION IN MYCOBACTERIA
研究分枝杆菌转录起始调控的新机制
- 批准号:
9266954 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
INVESTIGATING NOVEL MECHANISMS OF TRANSCRIPTION INITIATION REGULATION IN MYCOBACT
研究 Mycobact 转录起始调控的新机制
- 批准号:
8563329 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
INVESTIGATING NOVEL MECHANISMS OF TRANSCRIPTION INITIATION REGULATION IN MYCOBACT
研究 Mycobact 中转录起始调控的新机制
- 批准号:
8695415 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
INVESTIGATING NOVEL MECHANISMS OF TRANSCRIPTION INITIATION REGULATION IN MYCOBACT
研究 Mycobact 中转录起始调控的新机制
- 批准号:
8881231 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
基于中枢胰岛素抵抗探讨自噬失调对肾虚阿尔茨海默的影响及机制研究
- 批准号:81803854
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别: