A novel computing framework to automatically process cardiac valve image data and predict treatment outcomes
一种新颖的计算框架,可自动处理心脏瓣膜图像数据并预测治疗结果
基本信息
- 批准号:9973167
- 负责人:
- 金额:$ 38.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdverse eventAlgorithmsAnatomyAreaArtificial IntelligenceAttentionBiomechanicsBiomedical ComputingClinicalClinical EngineeringComplexComputer AnalysisComputer ModelsComputer SimulationConsumptionCoronary OcclusionsDataData AnalysesData SetDevelopmentDevice DesignsDevice or Instrument DevelopmentDevicesDictionaryDiseaseElementsEvaluationExtravasationFeedbackFinite Element AnalysisGenerationsGeometryGoalsGuidelinesHeart ValvesHospitalsHourHumanImageInterventionLaboratoriesLanguageLearningLeft ventricular structureMachine LearningManualsMethodsMitral ValveModelingOutcomeOutputPatient-Focused OutcomesPatientsPerformancePlant RootsPostoperative PeriodProblem SetsProceduresProcessPropertyResearch PersonnelResponse ElementsRunningRuptureSamplingShapesStatistical Data InterpretationStentsStructureTechniquesTestingThinnessTimeTissue ModelTrainingTranslationsTreatment outcomeUncertaintyVariantX-Ray Computed Tomographyalgorithm trainingaortic valveaortic valve replacementascending aortabasecalcificationclinical applicationclinical imagingclinical practiceclinically translatabledeep learningdeep neural networkheart functionheart imagingimaging modalityimprovedinnovationmachine learning algorithmmodels and simulationnovelpatient populationpersonalized approachpopulation basedpreventreconstructionresearch clinical testingsimulationspeech recognitiontime resolved datatwo-dimensionalvirtualvirtual clinical trial
项目摘要
PROJECT SUMMARY
There is a massive amount of clinical three-dimensional (3D) cardiac image data available today in
numerous hospitals, but such data has been considerably underutilized in both clinical and engineering analyses
of cardiac function. These 3D data offers unique and valuable information, allowing researchers to develop
innovative, personalized approaches to treat diseases. Furthermore, using these 3D datasets as input to
computational models can facilitate a population-based analysis that can be used to quantify uncertainty in
treatment procedures, and can be utilized for virtual clinical trials for innovative device development. However,
there are several critical technical bottlenecks preventing simulation-based clinical evaluation a reality: 1)
difficulty in automatic 3D reconstruction of thin complex structures such as heart valve leaflets from clinical
images, 2) computational models are constructed without mesh correspondence, which makes it challenging to
run batch simulations and conduct large patient population data analyses due to inconsistencies in model setups,
and 3) computing time is long, which inhibits prompt feedback for clinical use.
A potential paradigm-changing solution to the challenges is to incorporate machine learning algorithms
to expedite the geometry reconstruction and computational analysis procedures. Therefore, the objective of this
proposal is to develop a novel computing framework, using advanced tissue modeling and machine learning
techniques, to automatically process pre-operative clinical image data and predict post-operative clinical
outcomes. Transcatheter aortic valve replacement (TAVR) intervention will serve as a testbed for the modeling
methods. In Aim 1, we will develop novel shape dictionary learning (SDL) based methods for automatic
reconstruction of TAVR patient aortic valves. Through the modeling process, mesh correspondence will be
established across the patient geometric models. The distribution and variation of TAVR patient geometries will
be described by statistical shape models (SSMs). In Aim 2, population-based FE analysis of the TAVR procedure
will be conducted on thousands of virtual patient models generated by the SSMs (Aim 1). A deep neural network
(DNN) will be developed and trained to learn the relationship between the TAVR FE inputs and outputs.
Successful completion of this study will result in a ML-FE surrogate for TAVR analysis, combining the automated
TAVR patient geometry reconstruction algorithms and the trained DNN, to provide fast TAVR biomechanics
analysis without extensive re-computing of the model. Furthermore, the algorithms developed in this study can
be generalized for other applications and devices.
项目概要
目前有大量临床三维 (3D) 心脏图像数据可供使用
许多医院,但这些数据在临床和工程分析中都没有得到充分利用
心脏功能。这些 3D 数据提供了独特且有价值的信息,使研究人员能够开发
创新、个性化的疾病治疗方法。此外,使用这些 3D 数据集作为输入
计算模型可以促进基于人群的分析,可用于量化不确定性
治疗程序,并可用于创新设备开发的虚拟临床试验。然而,
有几个关键的技术瓶颈阻碍了基于模拟的临床评估成为现实:1)
临床上难以自动 3D 重建薄的复杂结构,例如心脏瓣膜小叶
图像,2)计算模型是在没有网格对应的情况下构建的,这使得它具有挑战性
由于模型设置不一致,运行批量模拟并进行大量患者群体数据分析,
3)计算时间长,不利于临床使用的及时反馈。
应对挑战的潜在范式改变解决方案是结合机器学习算法
加快几何重建和计算分析程序。因此,本次活动的目的
提案是利用先进的组织建模和机器学习开发一种新颖的计算框架
技术,自动处理术前临床图像数据并预测术后临床
结果。经导管主动脉瓣置换术(TAVR)干预将作为模型的测试平台
方法。在目标 1 中,我们将开发基于形状字典学习 (SDL) 的新颖方法,用于自动
TAVR 患者主动脉瓣重建。通过建模过程,网格对应关系将是
建立跨患者的几何模型。 TAVR 患者几何形状的分布和变化将
通过统计形状模型(SSM)来描述。在目标 2 中,基于人群的 TAVR 手术有限元分析
将在 SSM 生成的数千个虚拟患者模型上进行(目标 1)。深度神经网络
(DNN) 将被开发和训练以了解 TAVR FE 输入和输出之间的关系。
这项研究的成功完成将产生用于 TAVR 分析的 ML-FE 替代品,结合自动化
TAVR 患者几何重建算法和经过训练的 DNN,提供快速的 TAVR 生物力学
无需对模型进行大量重新计算即可进行分析。此外,本研究开发的算法可以
可以推广到其他应用程序和设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Sun其他文献
Wei Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Sun', 18)}}的其他基金
Precompetitive Collaboration on Liquid Biopsy for Early Cancer Assessment: Data Management and Coordinating Unit
用于早期癌症评估的液体活检的竞争前合作:数据管理和协调单位
- 批准号:
10838127 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Post-GWAS Functional Genomics Analysis to Define Pathogenic Mechanisms for Pulmonary Arterial Hypertension
GWAS 后功能基因组学分析确定肺动脉高压的致病机制
- 批准号:
10524975 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别:
Yersinia Outer-Membrane-Vesicle Vaccines Against Pneumonic Plague
鼠疫耶尔森氏菌外膜囊泡疫苗
- 批准号:
10673295 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别:
Yersinia Outer-Membrane-Vesicle Vaccines Against Pneumonic Plague
鼠疫耶尔森氏菌外膜囊泡疫苗
- 批准号:
10555332 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别:
Yersinia Outer-Membrane-Vesicle Vaccines Against Pneumonic Plague
鼠疫耶尔森氏菌外膜囊泡疫苗
- 批准号:
10441853 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别:
Post-GWAS Functional Genomics Analysis to Define Pathogenic Mechanisms for Pulmonary Arterial Hypertension
GWAS 后功能基因组学分析确定肺动脉高压的致病机制
- 批准号:
10697364 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别:
Statistical Methods for T Cell Receptor (TCR) Analysis
T 细胞受体 (TCR) 分析的统计方法
- 批准号:
10620574 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别:
Statistical Genetics and Genomics for Epidemiologic Research
流行病学研究的统计遗传学和基因组学
- 批准号:
10426287 - 财政年份:2018
- 资助金额:
$ 38.36万 - 项目类别:
Yersinia pseudotuberculosis-based vaccines for plague and yersiniosis
基于假结核耶尔森氏菌的鼠疫和耶尔森氏菌疫苗
- 批准号:
9471106 - 财政年份:2016
- 资助金额:
$ 38.36万 - 项目类别:
Biomechanical study on aortic-mitral coupling in transcatheter aortic valve replacement
经导管主动脉瓣置换术中主动脉-二尖瓣耦合的生物力学研究
- 批准号:
9274379 - 财政年份:2016
- 资助金额:
$ 38.36万 - 项目类别:
相似国自然基金
基于机器学习和影像学多参数融合的心血管不良事件风险预测模型研究
- 批准号:82370513
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
GNB3联合光谱CT冠周脂肪组学预警ACS后心血管不良事件的模型构建
- 批准号:82302186
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人工智能和多模态信息预测复杂下肢动脉病变术后不良事件的算法机制研究
- 批准号:82370499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于效用错位视角的医疗不良事件管理政策的引导体系优化研究
- 批准号:72304012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于真实世界数据的药物相互作用相关不良事件风险评估及其管理策略研究
- 批准号:72304010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
- 批准号:
10759550 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
- 批准号:
10750556 - 财政年份:2023
- 资助金额:
$ 38.36万 - 项目类别:
Right Ventricular Remodeling in Tetralogy of Fallot
法洛四联症的右心室重构
- 批准号:
10708738 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别:
Neural Substrate of Outcomes after Neonatal Hypoxic Ischemic Encephalopathy
新生儿缺氧缺血性脑病后结局的神经基质
- 批准号:
10452978 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
- 批准号:
10580011 - 财政年份:2022
- 资助金额:
$ 38.36万 - 项目类别: