A novel computing framework to automatically process cardiac valve image data and predict treatment outcomes

一种新颖的计算框架,可自动处理心脏瓣膜图像数据并预测治疗结果

基本信息

  • 批准号:
    9973167
  • 负责人:
  • 金额:
    $ 38.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY There is a massive amount of clinical three-dimensional (3D) cardiac image data available today in numerous hospitals, but such data has been considerably underutilized in both clinical and engineering analyses of cardiac function. These 3D data offers unique and valuable information, allowing researchers to develop innovative, personalized approaches to treat diseases. Furthermore, using these 3D datasets as input to computational models can facilitate a population-based analysis that can be used to quantify uncertainty in treatment procedures, and can be utilized for virtual clinical trials for innovative device development. However, there are several critical technical bottlenecks preventing simulation-based clinical evaluation a reality: 1) difficulty in automatic 3D reconstruction of thin complex structures such as heart valve leaflets from clinical images, 2) computational models are constructed without mesh correspondence, which makes it challenging to run batch simulations and conduct large patient population data analyses due to inconsistencies in model setups, and 3) computing time is long, which inhibits prompt feedback for clinical use. A potential paradigm-changing solution to the challenges is to incorporate machine learning algorithms to expedite the geometry reconstruction and computational analysis procedures. Therefore, the objective of this proposal is to develop a novel computing framework, using advanced tissue modeling and machine learning techniques, to automatically process pre-operative clinical image data and predict post-operative clinical outcomes. Transcatheter aortic valve replacement (TAVR) intervention will serve as a testbed for the modeling methods. In Aim 1, we will develop novel shape dictionary learning (SDL) based methods for automatic reconstruction of TAVR patient aortic valves. Through the modeling process, mesh correspondence will be established across the patient geometric models. The distribution and variation of TAVR patient geometries will be described by statistical shape models (SSMs). In Aim 2, population-based FE analysis of the TAVR procedure will be conducted on thousands of virtual patient models generated by the SSMs (Aim 1). A deep neural network (DNN) will be developed and trained to learn the relationship between the TAVR FE inputs and outputs. Successful completion of this study will result in a ML-FE surrogate for TAVR analysis, combining the automated TAVR patient geometry reconstruction algorithms and the trained DNN, to provide fast TAVR biomechanics analysis without extensive re-computing of the model. Furthermore, the algorithms developed in this study can be generalized for other applications and devices.
项目摘要 今天有大量临床三维(3D)心脏图像数据 许多医院,但是在临床和工程分析中,此类数据却大大不足 心脏功能。这些3D数据提供了独特而有价值的信息,使研究人员可以开发 创新的个性化治疗疾病的方法。此外,使用这些3D数据集作为输入 计算模型可以促进基于人群的分析,该分析可用于量化不确定性 治疗程序,可用于用于创新设备开发的虚拟临床试验。然而, 有几种关键的技术瓶颈可防止基于模拟的临床评估一个现实:1) 薄复杂结构的自动3D重建(例如临床的心脏瓣膜传单)的难度 图像,2)计算模型是没有网格对应的,这使其具有挑战性 由于模型设置不一致而进行批处理模拟并进行大量的患者人群数据分析, 3)计算时间很长,这抑制了临床使用的迅速反馈。 针对挑战的潜在改变范式的解决方案是合并机器学习算法 加快几何重建和计算分析程序。因此,这个目的 建议是使用先进的组织建模和机器学习来开发一个新颖的计算框架 技术,自动处理术前临床图像数据并预测术后临床 结果。经导管主动脉瓣置换(TAVR)干预将用作建模的测试台 方法。在AIM 1中,我们将开发基于自动的新型形状词典学习(SDL)方法 TAVR患者主动脉瓣的重建。通过建模过程,网格对应关系将是 建立在患者几何模型中。 TAVR患者几何形状的分布和变化将 通过统计形状模型(SSM)描述。在AIM 2中,基于人群的FE分析TAVR程序 将对SSM产生的数千个虚拟患者模型进行(AIM 1)。深度神经网络 (DNN)将进行开发和培训,以了解TAVR FE输入和输出之间的关系。 这项研究的成功完成将导致ML-FE替代TAVR分析,并将自动化 TAVR患者的几何重建算法和受过训练的DNN,以提供快速的TAVR生物力学 分析没有大量重新计算模型。此外,本研究中开发的算法可以 对其他应用程序和设备进行概括。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wei Sun其他文献

Wei Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wei Sun', 18)}}的其他基金

Precompetitive Collaboration on Liquid Biopsy for Early Cancer Assessment: Data Management and Coordinating Unit
用于早期癌症评估的液体活检的竞争前合作:数据管理和协调单位
  • 批准号:
    10838127
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
Post-GWAS Functional Genomics Analysis to Define Pathogenic Mechanisms for Pulmonary Arterial Hypertension
GWAS 后功能基因组学分析确定肺动脉高压的致病机制
  • 批准号:
    10524975
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
Yersinia Outer-Membrane-Vesicle Vaccines Against Pneumonic Plague
鼠疫耶尔森氏菌外膜囊泡疫苗
  • 批准号:
    10673295
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
Yersinia Outer-Membrane-Vesicle Vaccines Against Pneumonic Plague
鼠疫耶尔森氏菌外膜囊泡疫苗
  • 批准号:
    10555332
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
Yersinia Outer-Membrane-Vesicle Vaccines Against Pneumonic Plague
鼠疫耶尔森氏菌外膜囊泡疫苗
  • 批准号:
    10441853
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
Post-GWAS Functional Genomics Analysis to Define Pathogenic Mechanisms for Pulmonary Arterial Hypertension
GWAS 后功能基因组学分析确定肺动脉高压的致病机制
  • 批准号:
    10697364
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
Statistical Methods for T Cell Receptor (TCR) Analysis
T 细胞受体 (TCR) 分析的统计方法
  • 批准号:
    10620574
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
Statistical Genetics and Genomics for Epidemiologic Research
流行病学研究的统计遗传学和基因组学
  • 批准号:
    10426287
  • 财政年份:
    2018
  • 资助金额:
    $ 38.36万
  • 项目类别:
Yersinia pseudotuberculosis-based vaccines for plague and yersiniosis
基于假结核耶尔森氏菌的鼠疫和耶尔森氏菌疫苗
  • 批准号:
    9471106
  • 财政年份:
    2016
  • 资助金额:
    $ 38.36万
  • 项目类别:
Biomechanical study on aortic-mitral coupling in transcatheter aortic valve replacement
经导管主动脉瓣置换术中主动脉-二尖瓣耦合的生物力学研究
  • 批准号:
    9274379
  • 财政年份:
    2016
  • 资助金额:
    $ 38.36万
  • 项目类别:

相似海外基金

Development of a regional anesthesia guidance system to increase patient access to opioid-sparing analgesia for hip fracture pain
开发区域麻醉引导系统,以增加患者获得髋部骨折疼痛的阿片类药物保留镇痛的机会
  • 批准号:
    10759550
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
Predicting adverse drug reactions via networks of drug binding pocket similarity
通过药物结合袋相似性网络预测药物不良反应
  • 批准号:
    10750556
  • 财政年份:
    2023
  • 资助金额:
    $ 38.36万
  • 项目类别:
Right Ventricular Remodeling in Tetralogy of Fallot
法洛四联症的右心室重构
  • 批准号:
    10708738
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
Neural Substrate of Outcomes after Neonatal Hypoxic Ischemic Encephalopathy
新生儿缺氧缺血性脑病后结局的神经基质
  • 批准号:
    10452978
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
Enhanced Imaging of the Fetal Brain Microstructure
胎儿脑微结构的增强成像
  • 批准号:
    10580011
  • 财政年份:
    2022
  • 资助金额:
    $ 38.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了