Genetic Dissection of Mechanisms by Which Exercise Promotes Systemic Health
运动促进全身健康机制的基因剖析
基本信息
- 批准号:9925167
- 负责人:
- 金额:$ 38.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAgeAgingAnimal TestingAnimalsAreaBehaviorBiological AssayBiologyCaenorhabditis elegansCellsCellular biologyClinicalDataDiabetes MellitusDiseaseDisease modelDissectionExerciseExercise TestFutureGene ExpressionGene ProteinsGenesGeneticGenetic ModelsGenetic TranscriptionHealthHealth BenefitHumanImpaired cognitionIndividualInterventionInvertebratesKnowledgeLifeLongevity PathwayMAP Kinase GeneMaintenanceMalignant NeoplasmsMeasuresMediatingMedicineMethodsMicrofluidic MicrochipsMitochondriaModelingModern MedicineModernizationMolecularMolecular GeneticsMorphologyMuscleNamesNematodaNerve DegenerationNervous system structureNeurodegenerative DisordersNeuronsOrthologous GeneParalysedPathway interactionsPhenotypePhysical activityPhysiologicalPositioning AttributePredispositionProteinsRecoveryRejuvenationResearchResolutionRestRoleSiblingsSignal TransductionStressStructural ProteinStructureSwimmingSynapsesSystemTestingTherapeuticThermogenesisTimeTissuesTouch sensationToxic effectTrainingTranslatingWorkaging brainanti aginganti-cancerbasecombatdesigneffective therapyexercise trainingflyfrailtyfunctional declinegenetic manipulationhealthspanhealthy agingimmunosenescenceimprovedin vivoinnovative technologiesinsightinterestmitochondrial dysfunctionmuscle strengthmuscular structuremutantneuroprotectionneurotoxicneurotoxicitynoveloxidationp38 Mitogen Activated Protein Kinasepromoterproteostasisreceptorsarcopeniasedentarytoolyoung adult
项目摘要
Regular exercise exerts a profound positive impact on health and the quality of aging. Still, our understanding
of the molecular mechanisms that mediate systemic exercise benefits remains surprisingly incomplete. In
particular, details of how work in muscle translates to system-wide maintenance, disease deterrence, and even
rejuvenation, are too poorly understood to be harnessed for therapeutic applications. We propose to address
this knowledge gap from a new angle that features innovative technology, facile gene manipulation, and
integrative in vivo neuronal assays over time. We have developed a C. elegans exercise model that uniquely
positions us to address three aims that together will advance understanding of the fundamental biology of
exercise benefits outside of the muscle domain, with a focus on neuronal aging.
Aim 1 will: a) test C. elegans homologs of genes involved in classical mammalian exercise training pathways
for roles in strength adaptation, b) address potential requirements for selected stress/longevity pathway genes
in exercise-induced enhancement of muscle strength; c) define animal-wide transcription changes that
accompany the trained state. Work will establish a deep mechanistic framework for analysis of exercise
benefits and address the degree of conservation of exercise adaptation pathways from nematodes to humans.
We will firmly ground a novel genetic model in which whole-animal benefits of exercise can be dissected.
In Aims 2 and 3, we shift our emphasis to address impact of exercise on neuronal healthspan.
Aim 2 will define the impact of exercise on neuronal healthspan while addressing the overall hypothesis that
exercise induces functional, structural, and molecular adaptations in neurons, delaying their age-associated
decline. We will conduct a detailed analysis of touch receptor neurons, characterizing how exercise changes
neuronal function, morphological restructuring, susceptibility to neurotoxic disease protein toxicity, and
mitochondrial status over adult life. We will apply selected assays to evaluate additional neuronal types to
document in unprecedented cellular detail how exercise influences in vivo nervous system aging.
Aim 3 will exploit unique features of the C. elegans experimental system to dissect the tissue network via which
genes needed for exercise adaptation promote muscle and neuronal health benefits. We will: a) address
whether selected key genes needed for muscle training act autonomously/nonautonomously to impact
neuronal healthspan, and b) test exercise-inducible genes encoding secreted proteins for roles in promoting
neuronal adaptations. We will gain initial insights into the tissue-interaction circuits involved in system-wide
exercise benefits and we may uncover exercise-induced drivers of neuronal healthspan.
Given unequivocal evidence that exercise is the most effective anti-aging, anti-disease, pro-health intervention
known in medicine, genetic dissection of exercise's maintenance capacities in native context and over time
should yield new insights that guide strategies for improving human health and the quality of aging.
定期锻炼对健康和衰老质量产生深远的积极影响。尽管如此,我们的理解
令人惊讶的是,介导全身运动益处的分子机制仍然不完整。在
特别是关于肌肉工作如何转化为全系统维护、疾病预防甚至
对复兴的了解太少,无法用于治疗应用。我们建议解决
从一个新的角度弥补这一知识差距,其特点是创新技术、简单的基因操作和
随着时间的推移进行体内神经元综合分析。我们开发了一种线虫运动模型,该模型具有独特的
使我们能够实现三个目标,这三个目标共同将增进对生物体基本生物学的理解
运动对肌肉领域之外也有好处,重点是神经元衰老。
目标 1 将:a) 测试参与经典哺乳动物运动训练途径的线虫基因同源物
对于力量适应中的作用,b)解决选定的压力/长寿途径基因的潜在需求
运动引起的肌肉力量增强; c) 定义动物范围内的转录变化
陪伴受过训练的状态。工作将为运动分析建立一个深层的机制框架
益处并解决从线虫到人类的运动适应途径的保守程度。
我们将坚定地建立一种新的遗传模型,在该模型中可以剖析运动对整个动物的益处。
在目标 2 和 3 中,我们将重点转向解决运动对神经元健康寿命的影响。
目标 2 将定义运动对神经元健康寿命的影响,同时解决以下总体假设:
运动会诱导神经元的功能、结构和分子适应,从而延缓其与年龄相关的变化
衰退。我们将对触觉感受器神经元进行详细分析,描述运动如何变化
神经元功能、形态重建、对神经毒性疾病的易感性、蛋白质毒性,以及
成年生活中的线粒体状态。我们将应用选定的检测来评估其他神经元类型
以前所未有的细胞细节记录运动如何影响体内神经系统衰老。
目标 3 将利用线虫实验系统的独特功能来剖析组织网络,通过该网络
运动适应所需的基因可促进肌肉和神经元的健康益处。我们将:a) 解决
肌肉训练所需的选定关键基因是否自主/非自主地发挥作用以产生影响
神经元健康寿命,b) 测试编码分泌蛋白的运动诱导基因在促进神经元健康方面的作用
神经元的适应。我们将对全系统涉及的组织相互作用回路有初步的了解
运动的好处,我们可能会发现运动引起的神经元健康寿命的驱动因素。
有明确证据表明运动是最有效的抗衰老、抗疾病、有利于健康的干预措施
医学上已知,对运动在自然环境下和随着时间的推移维持能力进行基因剖析
应该产生新的见解,指导改善人类健康和老龄化质量的策略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pluronic gel-based burrowing assay for rapid assessment of neuromuscular health in C. elegans.
基于 Pluronic 凝胶的洞穴测定,用于快速评估线虫的神经肌肉健康状况。
- DOI:10.1038/s41598-019-51608-9
- 发表时间:2019
- 期刊:
- 影响因子:4.6
- 作者:Lesanpezeshki,Leila;Hewitt,JenniferE;Laranjeiro,Ricardo;Antebi,Adam;Driscoll,Monica;Szewczyk,NathanielJ;Blawzdziewicz,Jerzy;Lacerda,CarlaMR;Vanapalli,SivaA
- 通讯作者:Vanapalli,SivaA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MONICA A. DRISCOLL其他文献
MONICA A. DRISCOLL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MONICA A. DRISCOLL', 18)}}的其他基金
Molecular and Cell Biological Foundations of Proteostress-Induced Neuronal Extrusion
蛋白质应激诱导的神经元挤压的分子和细胞生物学基础
- 批准号:
10753902 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Molecular Underpinnings of Enduring Exercise Benefits
持久运动益处的分子基础
- 批准号:
10545757 - 财政年份:2022
- 资助金额:
$ 38.58万 - 项目类别:
Molecular Underpinnings of Enduring Exercise Benefits
持久运动益处的分子基础
- 批准号:
10388673 - 财政年份:2022
- 资助金额:
$ 38.58万 - 项目类别:
Defining roles of genetic and age in extracellular elimination of neurotoxic aggregates
确定遗传和年龄在细胞外消除神经毒性聚集体中的作用
- 批准号:
10813264 - 财政年份:2017
- 资助金额:
$ 38.58万 - 项目类别:
Defining roles of genetic and age in extracellular elimination of neurotoxic aggregates
确定遗传和年龄在细胞外消除神经毒性聚集体中的作用
- 批准号:
9905340 - 财政年份:2017
- 资助金额:
$ 38.58万 - 项目类别:
Defining roles of genetic and age in extracellular elimination of neurotoxic aggregates
确定遗传和年龄在细胞外消除神经毒性聚集体中的作用
- 批准号:
10405724 - 财政年份:2017
- 资助金额:
$ 38.58万 - 项目类别:
Dissecting mechanisms of mitochondiral extrusion from C. elegans neurons
剖析线虫神经元线粒体挤出的机制
- 批准号:
9462368 - 财政年份:2017
- 资助金额:
$ 38.58万 - 项目类别:
Defining roles of genetic and age in extracellular elimination of neurotoxic aggregates
确定遗传和年龄在细胞外消除神经毒性聚集体中的作用
- 批准号:
10597235 - 财政年份:2017
- 资助金额:
$ 38.58万 - 项目类别:
Defining Roles of Genetics and Age in Extrusion of Neurotoxic Aggregates
定义遗传和年龄在神经毒性聚集体排出中的作用
- 批准号:
10621615 - 财政年份:2017
- 资助金额:
$ 38.58万 - 项目类别:
Genetic Dissection of Mechanisms by Which Exercise Promotes Systemic Health
运动促进全身健康机制的基因剖析
- 批准号:
9360536 - 财政年份:2016
- 资助金额:
$ 38.58万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 38.58万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 38.58万 - 项目类别:
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Immunomodulatory ligand B7-1 targets p75 neurotrophin receptor in neurodegeneration
免疫调节配体 B7-1 在神经变性中靶向 p75 神经营养蛋白受体
- 批准号:
10660332 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 38.58万 - 项目类别: