Fetal Tissue Engineering to Treat Spina Bifida Before Birth
胎儿组织工程在出生前治疗脊柱裂
基本信息
- 批准号:9923771
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsBiocompatible MaterialsBiological ProcessBiomedical EngineeringBirthBladderBladder DysfunctionBone DiseasesBone GrowthBone RegenerationBone TissueCaringCartilageCerebrospinal FluidCerebrospinal fluid shunts procedureChemicalsChildChildhoodClinicalClinical TrialsCoculture TechniquesCombined Modality TherapyCongenital AbnormalityConnective TissueDefectDeformityDevelopmentDiseaseDistalDura MaterEnvironmentFetal TissuesFetusFoundationsFundingGoldGrowthHealth Care CostsHistologicHumanIn VitroIncontinenceInfection preventionIntestinesKyphosis deformity of spineLesionLifeLocomotor RecoveryMagnetic Resonance ImagingMeasuresMechanicsMedicineMeningitisMeningomyeloceleMethodsModelingMotorMusculoskeletalNatureNerve TissueNervous System PhysiologyNeural Tube ClosureNeurodegenerative DisordersNeurologicNeuronsOperative Surgical ProceduresOryctolagus cuniculusOsteoblastsOsteogenesisOutcomeParalysedPatientsPlacentaPregnancyPreventive carePropertyQuality of lifeRadiology SpecialtyRandomized Controlled Clinical TrialsRattusRecovery of FunctionResearchResolutionRiskSkinSolidSpinal CordSpinal DysraphismSpinal cord injuryStructureTdT-Mediated dUTP Nick End Labeling AssayTestingTherapeuticTimeTissue EngineeringTraumaTreatment EfficacyTretinoinUnited StatesUnited States National Institutes of HealthVariantVertebral columnWalkingbasebonecognitive disabilitycombinatorialdensityexperienceexperimental studyfetalfunctional outcomeshindbrainimprovedin uteroin utero transplantationin vivomalformationmesenchymal stromal cellmicroCTmotor function improvementneuron apoptosisneuroprotectionnovelnovel strategiesnovel therapeuticsosteogenicpostnatalpre-clinicalpreclinical studyprenatalprospectiverecruitregenerativerepairedscaffoldspinal cord compressionstem cellstissue regenerationtreatment grouptumor
项目摘要
ABSTRACT
Spina bifida (SB) is the most common cause of lifelong childhood paralysis in the United States, and
approximately four children are born with this devastating neurological congenital defect daily. SB results from
the incomplete closure of the neural tube during the fourth week of gestation, leaving the delicate nervous
tissue of the spinal cord unprotected by the typical layers of bone and connective tissue. The exposed spinal
cord sustains intrauterine chemical and mechanical trauma, leaving children with lifelong paralysis, bowel and
bladder incontinence, musculoskeletal deformities, and cognitive disabilities due to hindbrain herniation. Until
recently, there was no treatment of SB and postnatal surgical closure of the exposed spinal cord, dura and skin
was primarily intended to prevent infection of the cerebrospinal fluid (meningitis). The treatment paradigm
changed after the NIH funded Management of Myelomeningocele Study (MOMS) - a multicenter, prospective,
randomized, controlled clinical trial - demonstrated that in utero repair of the SB defect was safe, decreased
the risk of hindbrain herniation and the need for CSF shunting, and that patients showed improvement in distal
neurologic function. While promising, the motor function improvements seen in the MOMS trial were limited,
and 58% of children who underwent prenatal repair were still unable to walk independently. Our recent
preclinical studies showed that treatment with early gestation placental derived mesenchymal stromal cells
(PMSCs) during in utero repair cures SB-associated motor function at birth in a fetal lamb model. However,
we also found that while treating the SB lesion with PMSCs at the time of standard in utero surgical repair
rescued motor function, locomotor recovery declined over time after birth in the fetal lamb model. Detailed
radiological and histological analyses showed that locomotor function decreased after the development of
severe kyphosis, cord compression and tethering due to the lack of bone and connective tissue, which is
consistent with human clinical findings. In this study, we propose to develop a multifunctional,
bioengineered scaffold to provide neuroprotection, anti-tethering and bone regeneration functions in one
treatment to solve this complicated disease problem. Our central hypothesis is that in utero transplantation of
a multifunctional bioengineered scaffold that utilizes the unique fetal developmental environment will provide a
comprehensive treatment to the disease development and cure SB before birth. If successfully accomplished,
this therapy will significantly lower healthcare costs and improve the quality of life of patients with SB.
抽象的
脊柱裂(SB)是美国终身瘫痪的最常见原因,
每天大约有四个孩子出生于这种毁灭性神经系统缺陷。 SB的结果
妊娠的第四周神经管的闭合不完整,留下了紧张的紧张
脊髓的组织不受典型的骨和结缔组织层的保护。暴露的脊柱
绳索承受宫内化学和机械创伤,使儿童患有终身瘫痪,肠和
膀胱尿失禁,肌肉骨骼畸形和因后脑疝引起的认知障碍。直到
最近,裸露的脊髓,硬脑膜和皮肤的SB和出生后手术闭合治疗
主要旨在防止感染脑脊液(脑膜炎)。治疗范式
在NIH资助的脊髓脑元素研究(MOMS)的管理之后,有所改变 - 多中心,潜在的,
随机,对照临床试验 - 证明在SB缺陷的子宫修复中是安全的,减少了
后脑疝的风险和CSF分流的需求,并且患者的远端有所改善
神经功能。虽然有希望,但在妈妈试验中看到的运动功能改进有限,
58%的接受产前修复的儿童仍无法独立行走。我们最近
临床前研究表明,用早期妊娠胎盘衍生的间充质细胞治疗
(PMSC)在子宫修复期间,可以在胎儿羊肉模型中治愈与SB相关的运动功能。然而,
我们还发现,在子宫手术修复标准时用PMSC处理SB病变时
救出的运动功能,在胎儿羔羊模型中出生后的时间随着时间的流逝而下降。详细的
放射学和组织学分析表明,发展后运动功能降低
由于缺乏骨骼和结缔组织而导致的严重脑膜病,绳索压缩和绑扎
与人类临床发现一致。在这项研究中,我们建议开发多功能的,
生物工程脚手架以提供神经保护,抗螺旋和骨再生功能
治疗以解决这个复杂的疾病问题。我们的中心假设是在子宫移植
利用独特胎儿发育环境的多功能生物工程脚手架将提供
综合治疗疾病发展并在出生前治愈SB。如果成功完成,
这种疗法将显着降低医疗保健成本,并改善SB患者的生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aijun Wang其他文献
Aijun Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aijun Wang', 18)}}的其他基金
Guinea pigs as a model of in utero stem cell therapy for spina bifida
豚鼠作为子宫内干细胞治疗脊柱裂的模型
- 批准号:
9299355 - 财政年份:2017
- 资助金额:
$ 34.34万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A suite of conditional mouse models for secretome labeling
一套用于分泌蛋白组标记的条件小鼠模型
- 批准号:
10640784 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Strategies to attenuate the indirect alloimmune response in encapsulated pancreatic islet transplantation
减弱封装胰岛移植中间接同种免疫反应的策略
- 批准号:
10678425 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
- 批准号:
10716174 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别: