Fetal Tissue Engineering to Treat Spina Bifida Before Birth
胎儿组织工程在出生前治疗脊柱裂
基本信息
- 批准号:9923771
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsBiocompatible MaterialsBiological ProcessBiomedical EngineeringBirthBladderBladder DysfunctionBone DiseasesBone GrowthBone RegenerationBone TissueCaringCartilageCerebrospinal FluidCerebrospinal fluid shunts procedureChemicalsChildChildhoodClinicalClinical TrialsCoculture TechniquesCombined Modality TherapyCongenital AbnormalityConnective TissueDefectDeformityDevelopmentDiseaseDistalDura MaterEnvironmentFetal TissuesFetusFoundationsFundingGoldGrowthHealth Care CostsHistologicHumanIn VitroIncontinenceInfection preventionIntestinesKyphosis deformity of spineLesionLifeLocomotor RecoveryMagnetic Resonance ImagingMeasuresMechanicsMedicineMeningitisMeningomyeloceleMethodsModelingMotorMusculoskeletalNatureNerve TissueNervous System PhysiologyNeural Tube ClosureNeurodegenerative DisordersNeurologicNeuronsOperative Surgical ProceduresOryctolagus cuniculusOsteoblastsOsteogenesisOutcomeParalysedPatientsPlacentaPregnancyPreventive carePropertyQuality of lifeRadiology SpecialtyRandomized Controlled Clinical TrialsRattusRecovery of FunctionResearchResolutionRiskSkinSolidSpinal CordSpinal DysraphismSpinal cord injuryStructureTdT-Mediated dUTP Nick End Labeling AssayTestingTherapeuticTimeTissue EngineeringTraumaTreatment EfficacyTretinoinUnited StatesUnited States National Institutes of HealthVariantVertebral columnWalkingbasebonecognitive disabilitycombinatorialdensityexperienceexperimental studyfetalfunctional outcomeshindbrainimprovedin uteroin utero transplantationin vivomalformationmesenchymal stromal cellmicroCTmotor function improvementneuron apoptosisneuroprotectionnovelnovel strategiesnovel therapeuticsosteogenicpostnatalpre-clinicalpreclinical studyprenatalprospectiverecruitregenerativerepairedscaffoldspinal cord compressionstem cellstissue regenerationtreatment grouptumor
项目摘要
ABSTRACT
Spina bifida (SB) is the most common cause of lifelong childhood paralysis in the United States, and
approximately four children are born with this devastating neurological congenital defect daily. SB results from
the incomplete closure of the neural tube during the fourth week of gestation, leaving the delicate nervous
tissue of the spinal cord unprotected by the typical layers of bone and connective tissue. The exposed spinal
cord sustains intrauterine chemical and mechanical trauma, leaving children with lifelong paralysis, bowel and
bladder incontinence, musculoskeletal deformities, and cognitive disabilities due to hindbrain herniation. Until
recently, there was no treatment of SB and postnatal surgical closure of the exposed spinal cord, dura and skin
was primarily intended to prevent infection of the cerebrospinal fluid (meningitis). The treatment paradigm
changed after the NIH funded Management of Myelomeningocele Study (MOMS) - a multicenter, prospective,
randomized, controlled clinical trial - demonstrated that in utero repair of the SB defect was safe, decreased
the risk of hindbrain herniation and the need for CSF shunting, and that patients showed improvement in distal
neurologic function. While promising, the motor function improvements seen in the MOMS trial were limited,
and 58% of children who underwent prenatal repair were still unable to walk independently. Our recent
preclinical studies showed that treatment with early gestation placental derived mesenchymal stromal cells
(PMSCs) during in utero repair cures SB-associated motor function at birth in a fetal lamb model. However,
we also found that while treating the SB lesion with PMSCs at the time of standard in utero surgical repair
rescued motor function, locomotor recovery declined over time after birth in the fetal lamb model. Detailed
radiological and histological analyses showed that locomotor function decreased after the development of
severe kyphosis, cord compression and tethering due to the lack of bone and connective tissue, which is
consistent with human clinical findings. In this study, we propose to develop a multifunctional,
bioengineered scaffold to provide neuroprotection, anti-tethering and bone regeneration functions in one
treatment to solve this complicated disease problem. Our central hypothesis is that in utero transplantation of
a multifunctional bioengineered scaffold that utilizes the unique fetal developmental environment will provide a
comprehensive treatment to the disease development and cure SB before birth. If successfully accomplished,
this therapy will significantly lower healthcare costs and improve the quality of life of patients with SB.
抽象的
脊柱裂 (SB) 是美国儿童终生瘫痪的最常见原因,
每天大约有四个孩子出生时患有这种毁灭性的神经先天缺陷。 SB 结果来自
妊娠第四周神经管不完全闭合,留下脆弱的神经
脊髓组织不受典型的骨和结缔组织层的保护。暴露的脊柱
脐带会造成宫内化学和机械损伤,导致儿童终生瘫痪,肠道和
膀胱失禁、肌肉骨骼畸形和后脑疝引起的认知障碍。直到
最近,没有治疗SB和产后手术闭合暴露的脊髓、硬脑膜和皮肤
主要目的是预防脑脊液感染(脑膜炎)。治疗范例
NIH 资助的脊髓脊膜膨出管理研究 (MOMS) 后发生了变化 - 一项多中心、前瞻性、
随机对照临床试验 - 证明子宫内修复 SB 缺陷是安全的,可减少
后脑疝的风险和脑脊液分流的需要,并且患者的远端功能有所改善
神经功能。尽管前景乐观,但 MOMS 试验中看到的运动功能改善有限,
58%接受产前修复的孩子仍然无法独立行走。我们最近的
临床前研究表明,妊娠早期胎盘来源的间充质基质细胞治疗
(PMSC) 在子宫内修复过程中可以治愈胎儿羔羊模型出生时 SB 相关的运动功能。然而,
我们还发现,在标准子宫手术修复时用 PMSC 治疗 SB 病变时
挽救了运动功能,但在胎儿羔羊模型中,运动恢复随着出生后的时间而下降。详细的
放射学和组织学分析表明,运动功能在发展后下降
由于缺乏骨骼和结缔组织而导致严重的脊柱后凸、脊髓受压和束缚,
与人类临床发现一致。在这项研究中,我们建议开发一种多功能、
生物工程支架集神经保护、抗束缚和骨再生功能于一身
治疗来解决这个复杂的疾病问题。我们的中心假设是,在子宫内移植
利用独特的胎儿发育环境的多功能生物工程支架将提供
对疾病发展进行综合治疗,并在出生前治愈SB。如果成功完成,
该疗法将显着降低 SB 患者的医疗费用并提高其生活质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aijun Wang其他文献
Aijun Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aijun Wang', 18)}}的其他基金
Guinea pigs as a model of in utero stem cell therapy for spina bifida
豚鼠作为子宫内干细胞治疗脊柱裂的模型
- 批准号:
9299355 - 财政年份:2017
- 资助金额:
$ 34.34万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
A suite of conditional mouse models for secretome labeling
一套用于分泌蛋白组标记的条件小鼠模型
- 批准号:
10640784 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Strategies to attenuate the indirect alloimmune response in encapsulated pancreatic islet transplantation
减弱封装胰岛移植中间接同种免疫反应的策略
- 批准号:
10678425 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别:
Islet dosing and loading density in injection molded macroencapsulation devices
注塑宏观封装装置中的胰岛剂量和装载密度
- 批准号:
10716174 - 财政年份:2023
- 资助金额:
$ 34.34万 - 项目类别: