Mechanisms of the cell non-autonomous dietary restriction pathway
细胞非自主饮食限制途径的机制
基本信息
- 批准号:9918231
- 负责人:
- 金额:$ 38.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgingCaenorhabditis elegansCellsChIP-seqClinicalCommunicationDataDiseaseDrug AntagonismEnvironmentEsthesiaEventExcisionFMO2FastingFoodFutureGenesGeneticGenetic ScreeningGenetic TranscriptionGoalsHealthHealth BenefitHumanHypoxiaIndividualInterventionIntestinesInvertebratesKnowledgeLeadLongevityLongevity PathwayMammalsMapsMediatingMedicalMetabolicModelingMolecularMolecular GeneticsNematodaNervous system structureNeuronsNeuropeptidesOrganismPathway interactionsPatientsPeptidesPerceptionPeripheralPhysiologicalProcessProteinsPublicationsPublishingRNA InterferenceResearch DesignResistanceRoleSensorySerotoninSerotonin AntagonistsSignal PathwaySignal TransductionSignaling MoleculeSmell PerceptionStressSynapsesSystemTechniquesTestingTimeTissuesWorkbasedietary restrictionenvironmental changefood restrictionhealthspanimprovedinnovationinsightneural circuitneural networkneuronal circuitryneurotransmissionnovelreceptorresponsetherapy developmenttooltranscription factor
项目摘要
PROJECT SUMMARY/ABSTRACT
Our understanding of the molecular and genetic mechanisms of aging has grown exponentially in the past 25
years. Groundbreaking studies in invertebrate models such as the nematode Caenorhabditis elegans have
been at the forefront of many breakthroughs, including the discovery of the first genes that control longevity.
Despite these important studies, there are many aspects of the genetic and molecular mechanisms of aging
that are still not well understood. One of these mechanisms is the cell non-autonomous control of aging by
small subsets of cells (frequently neurons) in an organism. Multiple highly regarded publications have
identified individual genes and neurons at the origin of signaling pathways that eventually modify genetic and
metabolic responses in peripheral tissues. These studies provide substantial evidence that cell non-
autonomous control of aging is common to multiple longevity pathways, but they lack in detail as to the specific
signals, receptors, neural circuits, and downstream effectors involved. Our preliminary data show that the
most well-studied longevity intervention, dietary restriction (DR), acts in part through a cell non-autonomous
signaling pathway that is inhibited by the smell of food in C. elegans. We further find that DR and fasting each
lead to induction of an intestinal protein, flavin-containing monooxygenase-2 (fmo-2), that is both necessary
and sufficient to improve healthspan, stress resistance, and longevity. We also observe that induction of fmo-2
and extension of lifespan both depend on the serotonergic signaling and can be recapitulated by the serotonin
antagonist drug, mianserin. This project will map the cell non-autonomous pathway initiated by removal of
food that eventually leads to intestinal fmo-2 induction and extension of lifespan. Aim 1 will identify and
epistatically relate the neurons involved in this neural circuit, answering important questions about which
specific cell(s) initiate the signal, which cell(s) propagate the signal, and ultimately, which cell(s) integrate the
signal into a system-wide response. The results will define a neural circuit led by food sensing and utilizing
serotonin that may overlap with other longevity pathways. The second aim will focus on the signals involved in
inter-neuronal and tissue to tissue communication by identifying small peptides, synaptic transport
mechanisms, and receptors involved in the pathway. The resulting data will fill out the neural circuit model
from aim 1 with the key signals and receptors beyond serotonin, and could lead to future studies designed to
mimic/block these signals. The third aim will identify the major receptors and transcription factors necessary to
induce fmo-2 in the intestine. We will use a forward genetic screen, a targeted RNAi approach, and existing
ChIP-SEQ data to define the major intestinal genes involved with DR-mediated fmo-2 induction. Together,
these aims will act independently and synergistically to provide an understanding of a major signaling network
that modifies aging. Our ultimate goal is to exploit this knowledge of control mechanisms of aging to develop
approaches that promote human health.
项目概要/摘要
过去 25 年来,我们对衰老的分子和遗传机制的了解呈指数级增长。
年。对无脊椎动物模型(例如线虫秀丽隐杆线虫)的开创性研究已经
一直处于许多突破的前沿,包括发现第一个控制寿命的基因。
尽管有这些重要的研究,但衰老的遗传和分子机制有很多方面
仍然没有得到很好的理解。这些机制之一是细胞非自主控制衰老
生物体中的一小部分细胞(通常是神经元)。多个备受推崇的出版物
确定了信号通路起源处的单个基因和神经元,这些信号通路最终改变了遗传和
外周组织的代谢反应。这些研究提供了大量证据表明细胞非
衰老的自主控制是多种长寿途径的共同点,但缺乏具体细节
涉及信号、受体、神经回路和下游效应器。我们的初步数据表明
研究最充分的长寿干预措施,饮食限制(DR),部分通过非自主细胞发挥作用
线虫中受食物气味抑制的信号通路。我们进一步发现 DR 和禁食各
导致诱导肠道蛋白质,即含黄素的单加氧酶-2 (fmo-2),这两者都是必需的
并足以改善健康寿命、抗压能力和寿命。我们还观察到 fmo-2 的诱导
和寿命的延长都依赖于血清素信号传导,并且可以通过血清素来概括
拮抗药,米安色林。该项目将绘制通过去除
最终导致肠道 fmo-2 诱导并延长寿命的食物。目标 1 将确定并
上位性地将参与该神经回路的神经元联系起来,回答关于哪些神经元的重要问题
特定细胞发起信号,哪些细胞传播信号,最终哪些细胞整合信号
信号转变为全系统响应。研究结果将定义一个由食物传感和利用主导的神经回路
血清素可能与其他长寿途径重叠。第二个目标将重点关注涉及的信号
通过识别小肽、突触运输进行神经元间和组织间通讯
机制以及参与该途径的受体。所得数据将填充神经回路模型
目标 1 涉及血清素以外的关键信号和受体,并可能导致未来的研究旨在
模仿/阻止这些信号。第三个目标将确定必要的主要受体和转录因子
在肠道中诱导 fmo-2。我们将使用正向遗传筛选、靶向 RNAi 方法以及现有的
ChIP-SEQ 数据定义了与 DR 介导的 fmo-2 诱导相关的主要肠道基因。一起,
这些目标将独立和协同地发挥作用,以提供对主要信号网络的理解
改变衰老。我们的最终目标是利用衰老控制机制的知识来开发
促进人类健康的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT F LEISER其他文献
SCOTT F LEISER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT F LEISER', 18)}}的其他基金
Flavin-containing monooxygenases in endogenous metabolism and aging
内源性代谢和衰老中的含黄素单加氧酶
- 批准号:
10833744 - 财政年份:2022
- 资助金额:
$ 38.32万 - 项目类别:
Flavin-containing monooxygenases in endogenous metabolism and aging
内源性代谢和衰老中的含黄素单加氧酶
- 批准号:
10558600 - 财政年份:2022
- 资助金额:
$ 38.32万 - 项目类别:
Flavin-containing monooxygenases in endogenous metabolism and aging
内源性代谢和衰老中的含黄素单加氧酶
- 批准号:
10341409 - 财政年份:2022
- 资助金额:
$ 38.32万 - 项目类别:
Mechanisms of cell non-autonomous signaling through the hypoxic response
通过缺氧反应的细胞非自主信号传导机制
- 批准号:
10532756 - 财政年份:2019
- 资助金额:
$ 38.32万 - 项目类别:
Mechanisms of cell non-autonomous signaling through the hypoxic response
通过缺氧反应的细胞非自主信号传导机制
- 批准号:
10066299 - 财政年份:2019
- 资助金额:
$ 38.32万 - 项目类别:
Mechanisms of cell non-autonomous signaling through the hypoxic response
通过缺氧反应的细胞非自主信号传导机制
- 批准号:
10341075 - 财政年份:2019
- 资助金额:
$ 38.32万 - 项目类别:
Novel approaches to study emerging roles of xenobiotic enzymes
研究异生酶新兴作用的新方法
- 批准号:
9761416 - 财政年份:2018
- 资助金额:
$ 38.32万 - 项目类别:
Mechanisms of the cell non-autonomous dietary restriction pathway
细胞非自主饮食限制途径的机制
- 批准号:
10406885 - 财政年份:2018
- 资助金额:
$ 38.32万 - 项目类别:
Mechanisms of the cell non-autonomous dietary restriction pathway
细胞非自主饮食限制途径的机制
- 批准号:
9757654 - 财政年份:2018
- 资助金额:
$ 38.32万 - 项目类别:
Conserved longevity mechanisms of the hypoxic response pathway
缺氧反应途径的保守长寿机制
- 批准号:
9193857 - 财政年份:2016
- 资助金额:
$ 38.32万 - 项目类别:
相似国自然基金
细胞色素C调控秀丽隐杆线虫衰老的分子机制研究
- 批准号:32171156
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
AMsh胶质细胞对感觉神经系统衰老的影响及机制研究
- 批准号:31900736
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用秀丽隐杆线虫为模型研究星形胶质细胞空间定位机理和功能
- 批准号:31872762
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
细胞外基质蛋白MADD-4通过增强GABA能突触传递抑制固有免疫能力的机制研究
- 批准号:31800857
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
微丝极性组装调控不对称细胞分裂的机制研究
- 批准号:31871352
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Modulation of Lifespan and Healthspan by Meiosis Genes
减数分裂基因对寿命和健康寿命的调节
- 批准号:
10724491 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Developmental regulation of the cell cycle machinery
细胞周期机制的发育调控
- 批准号:
10714634 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Defining Nuclear H2O2 Regulation by Covalent Regulators
通过共价调节剂定义核 H2O2 调节
- 批准号:
10725269 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别:
Genetic Analyses of Dendrite Morphogenesis in Caenorhabditis Elegans
秀丽隐杆线虫树突形态发生的遗传分析
- 批准号:
10736702 - 财政年份:2023
- 资助金额:
$ 38.32万 - 项目类别: