Mechanisms of cell non-autonomous signaling through the hypoxic response
通过缺氧反应的细胞非自主信号传导机制
基本信息
- 批准号:10532756
- 负责人:
- 金额:$ 31.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:Adenylate CyclaseAgingCaenorhabditis elegansCell physiologyCellsCellular StructuresDataDiseaseEnvironmentEnzymesFMO2FutureGenesGeneticGerontologyGoalsGrowthHealthHealth BenefitHumanHypoxiaHypoxia Inducible FactorIndividualInterventionIntestinesInvertebratesKnowledgeLiteratureLongevityLongevity PathwayMapsMediatingMedicalMetabolismModelingModificationMolecularMutationNematodaNervous SystemNeuronal HypoxiaNeuronsNeuropeptidesOrganismOxygenPathway interactionsPerceptionPeripheralPhysiologicalPhysiologyProcessProteinsPublicationsPublishingResearch DesignResistanceRoleSensorySerotonergic SystemSerotoninSerotonin ProductionSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinStressTechniquesTestingTissuesWorkdeprivationdietary restrictionenvironmental changehealth determinantshealthspanhypoxia inducible factor 1improvedinnovationinsightneuralneural circuitneuromechanismneuronal circuitryneurotransmissionnovelpromoterreceptorresponseserotonin receptortherapy developmenttooltranscription factortransmission process
项目摘要
Project Summary/Abstract
Led by groundbreaking studies in invertebrate models, our understanding of the mechanisms of aging has
grown exponentially in the past 25 years. Despite this growth, there are many aspects of the genetic and
molecular mechanisms of aging that are still not well understood. One of these mechanisms is the ability of
small subsets of cells (frequently neurons) to modulate the aging process cell non-autonomously. Recently,
multiple high-impact publications have identified individual genes and neurons that initiate signaling pathways
and eventually modify the physiology of peripheral tissues to benefit health and longevity. These studies
provide substantial evidence that cell non-autonomous control of aging is common to multiple longevity
pathways, but they lack in detail as to the specific signals, receptors, and neural circuits involved. Our
preliminary data identify a new cell non-autonomous longevity pathway, led by the transcription factor
necessary to respond to low oxygen environments, the hypoxia-inducible factor (hif-1). We further find that
stabilization of HIF-1 in neurons, through either genetic or environmental approaches, leads to induction of an
intestinal protein, flavin-containing monooxygenase-2 (fmo-2), that is both necessary and sufficient to improve
healthspan, stress resistance, and longevity. We observe that induction of fmo-2 and extension of lifespan by
HIF-1 stabilization each depend on the presence of the serotonin producing enzyme tph-1 and the serotonin
receptor ser-7. This project will map core neural components of the cell non-autonomous pathway initiated by
stabilization of neuronal HIF-1 that eventually leads to intestinal fmo-2 induction and extension of lifespan. Aim
1 will focus on the initiation of the response, including the identity of the neurons and the timing and
mechanism of HIF-1's promotion of physiological changes cell non-autonomously. The results will establish
where and how a small subset of neurons initiates a broad response to low oxygen. The second aim focuses
on the neuron expressing ser-7, a highly conserved serotonin receptor that propagates the HIF-1-mediated
signal. The third aim will focus on the neural circuit downstream of HIF-1, identifying key propagating and
integrating cells and core signals both unique to this pathway and shared by other cell non-autonomous
networks. The results will define a neural circuit led by HIF-1 and utilizing serotonin that may partially overlap
with other longevity pathways. The resulting data are crucial to our understanding of defined networks that
control physiology and the rate of aging, and will likely lead to future studies designed to mimic signals in these
networks. Together, these aims will act independently and synergistically to provide an understanding of a
major signaling network that modifies aging. Our ultimate goal is to exploit this knowledge of control
mechanisms of aging to develop approaches that promote human health.
项目概要/摘要
在无脊椎动物模型的突破性研究的引领下,我们对衰老机制的理解已经深入人心
过去25年呈指数级增长。尽管有这种增长,但遗传和基因的许多方面
衰老的分子机制仍不清楚。这些机制之一是能够
小细胞子集(通常是神经元)非自主地调节细胞的衰老过程。最近,
多个高影响力出版物已确定启动信号通路的单个基因和神经元
并最终改变周围组织的生理机能,以有益于健康和长寿。这些研究
提供大量证据表明细胞非自主控制衰老对于多种长寿者来说是常见的
途径,但它们缺乏有关具体信号、受体和所涉及神经回路的细节。我们的
初步数据确定了由转录因子主导的新细胞非自主长寿途径
缺氧诱导因子(hif-1)是应对低氧环境所必需的。我们进一步发现
通过遗传或环境方法,神经元中 HIF-1 的稳定性会导致诱导
肠道蛋白,即含黄素单加氧酶-2 (fmo-2),这对于改善肠道菌群而言是必要且充分的
健康寿命、抗压能力和长寿。我们观察到 fmo-2 的诱导和寿命的延长
HIF-1 的稳定性分别取决于产生血清素的酶 tph-1 和血清素的存在
受体 Ser-7。该项目将绘制细胞非自主通路的核心神经组件的图谱
神经元 HIF-1 的稳定,最终导致肠道 fmo-2 诱导和寿命延长。目的
1 将重点关注响应的启动,包括神经元的身份以及时间和响应
HIF-1促进细胞非自主生理变化的机制。结果将确定
一小部分神经元在何处以及如何发起对低氧的广泛反应。第二个目标重点
表达 Ser-7 的神经元,这是一种高度保守的血清素受体,可传播 HIF-1 介导的
信号。第三个目标将重点关注 HIF-1 下游的神经回路,识别关键的传播和
整合该途径特有且由其他非自主细胞共享的细胞和核心信号
网络。结果将定义由 HIF-1 领导并利用可能部分重叠的血清素的神经回路
与其他长寿途径。由此产生的数据对于我们理解定义的网络至关重要
控制生理学和衰老速度,并可能导致未来旨在模拟这些信号的研究
网络。这些目标将共同独立和协同地发挥作用,以提供对
改变衰老的主要信号网络。我们的最终目标是利用这些控制知识
衰老机制,以开发促进人类健康的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT F LEISER其他文献
SCOTT F LEISER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT F LEISER', 18)}}的其他基金
Flavin-containing monooxygenases in endogenous metabolism and aging
内源性代谢和衰老中的含黄素单加氧酶
- 批准号:
10833744 - 财政年份:2022
- 资助金额:
$ 31.63万 - 项目类别:
Flavin-containing monooxygenases in endogenous metabolism and aging
内源性代谢和衰老中的含黄素单加氧酶
- 批准号:
10558600 - 财政年份:2022
- 资助金额:
$ 31.63万 - 项目类别:
Flavin-containing monooxygenases in endogenous metabolism and aging
内源性代谢和衰老中的含黄素单加氧酶
- 批准号:
10341409 - 财政年份:2022
- 资助金额:
$ 31.63万 - 项目类别:
Mechanisms of cell non-autonomous signaling through the hypoxic response
通过缺氧反应的细胞非自主信号传导机制
- 批准号:
10066299 - 财政年份:2019
- 资助金额:
$ 31.63万 - 项目类别:
Mechanisms of cell non-autonomous signaling through the hypoxic response
通过缺氧反应的细胞非自主信号传导机制
- 批准号:
10341075 - 财政年份:2019
- 资助金额:
$ 31.63万 - 项目类别:
Novel approaches to study emerging roles of xenobiotic enzymes
研究异生酶新兴作用的新方法
- 批准号:
9761416 - 财政年份:2018
- 资助金额:
$ 31.63万 - 项目类别:
Mechanisms of the cell non-autonomous dietary restriction pathway
细胞非自主饮食限制途径的机制
- 批准号:
10406885 - 财政年份:2018
- 资助金额:
$ 31.63万 - 项目类别:
Mechanisms of the cell non-autonomous dietary restriction pathway
细胞非自主饮食限制途径的机制
- 批准号:
9757654 - 财政年份:2018
- 资助金额:
$ 31.63万 - 项目类别:
Mechanisms of the cell non-autonomous dietary restriction pathway
细胞非自主饮食限制途径的机制
- 批准号:
9918231 - 财政年份:2018
- 资助金额:
$ 31.63万 - 项目类别:
Conserved longevity mechanisms of the hypoxic response pathway
缺氧反应途径的保守长寿机制
- 批准号:
9193857 - 财政年份:2016
- 资助金额:
$ 31.63万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单细胞多组学解析脐带间充质干细胞优势功能亚群重塑巨噬细胞极化治疗皮肤光老化的作用与机制
- 批准号:82302829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigation of the G protein-coupled receptor FSHR-1 in multi-tissue neuromuscular signaling in normal and oxidative stress conditions
正常和氧化应激条件下 G 蛋白偶联受体 FSHR-1 在多组织神经肌肉信号传导中的研究
- 批准号:
10515156 - 财政年份:2022
- 资助金额:
$ 31.63万 - 项目类别:
Mechanisms of cell non-autonomous signaling through the hypoxic response
通过缺氧反应的细胞非自主信号传导机制
- 批准号:
10066299 - 财政年份:2019
- 资助金额:
$ 31.63万 - 项目类别:
Mechanisms of cell non-autonomous signaling through the hypoxic response
通过缺氧反应的细胞非自主信号传导机制
- 批准号:
10341075 - 财政年份:2019
- 资助金额:
$ 31.63万 - 项目类别:
The mechanisms of serotonin-based signaling in food perception and DR-mediated longevity
基于血清素的信号传导在食物感知和 DR 介导的长寿中的机制
- 批准号:
9610851 - 财政年份:2018
- 资助金额:
$ 31.63万 - 项目类别:
The mechanisms of serotonin-based signaling in food perception and DR-mediated longevity
基于血清素的信号传导在食物感知和 DR 介导的长寿中的机制
- 批准号:
9982159 - 财政年份:2018
- 资助金额:
$ 31.63万 - 项目类别: