Oligodeoxynucleotide Synthesis Using Protecting Groups and a Linker Cleavable Und
使用保护基团和可切割连接体合成寡脱氧核苷酸
基本信息
- 批准号:8626130
- 负责人:
- 金额:$ 33.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-01 至 2017-09-19
- 项目状态:已结题
- 来源:
- 关键词:AcidityAffinityAldehydesAmidesAreaAziridinesBiochemistryBiologyBiomedical ResearchCell physiologyCellsChemicalsChemistryCleaved cellCollaborationsColumn ChromatographyDNADNA DamageDNA biosynthesisDNA-Protein InteractionDimensionsDoctor of PhilosophyDrug usageEducationEpoxy CompoundsEstersFoundationsGenerationsGoalsHealthHigh Pressure Liquid ChromatographyLearningLinkMaleimidesMessenger RNAMetalsMethodologyMethodsModelingMolecular BiologyN.I.H. Research SupportNucleic AcidsOligosaccharidesOrganic SynthesisOutcomePeptidesPharmaceutical ChemistryPharmaceutical PreparationsPlayPostdoctoral FellowProblem SolvingProceduresProcessProteinsRNAReactionReagentReportingResearchResearch InfrastructureResearch PersonnelResearch Project GrantsSolidSolutionsStudentsSulfidesTechniquesTechnologyTherapeutic AgentsTrainingTransition ElementsUltraviolet Raysanalogaptamerbasecareerchemical synthesiscombinatorial chemistrycommercializationcostcovalent bonddrug developmentgel electrophoresisgene synthesishemiacetalimprovedinstrumentinterestnew technologynext generationoxidationphosphoramiditeprogramspublic health relevanceundergraduate student
项目摘要
Project summary
Oligodeoxynucleotide Synthesis using Protecting Groups and a Linker
Cleavable under Neutral Oxidative Conditions
DNA analogs that contain latently reactive electrophilic functionalities can selectively form covalent bonds
with target biomolecules such as DNA, mRNA, and protein through affinity induced reactions. As a result, they
can be used as probes in research areas such as chemical biology, and have the potential to become a new class
of therapeutic agents that have certain advantages over drugs based on small organic molecules and peptides.
In addition, DNA derivatives that contain base-labile and electrophilic groups have been found in cells. They
are results of important cellular processes and may play important cellular functions as well. Consequently,
chemical synthesis of base-labile and electrophilic DNA analogs is important in health related research.
Traditional DNA synthesis technologies use strongly basic and nucleophilic reagents, which are not compatible
with base-labile and electrophilic groups, are not suitable for the purpose. A few reported methods intended to
solve the problem have serious drawbacks including contamination of product by toxic transition metal, high
cost of excessively used precious metal, damage of DNA by UV light, complicated post-DNA synthesis
procedure, and narrow applications. The specific aim of this project is to develop a universally useful
technology for the synthesis of DNA analogs that contain a wide range of base-labile and electrophilic
functionalities. To achieve the aim, protecting groups and linkers based on the 1,3-dithian-2-yl-methoxy
organic function will be employed during DNA synthesis. With these groups and linkers, the technology does
not require using any strong base, nucleophile, transition metal, and UV light in the entire process. The
technology does not need any tedious and complicated post-DNA synthesis manipulations either. As a result, it
will be practically useful for the synthesis of DNA analogs containing base-labile and electrophilic groups. Our
long-term objective is to develop a new generation of antisense drugs based on latently reactive electrophilic
DNA analogs. Successful completion of this project will build the foundation for us to achieve the objective.
Importantly, the new technology will be widely used by other biomedical researchers all over the world as well.
The PI believes that cultivating next generation biomedical researchers is equally important as meritorious
research itself. This project will help the PI to train one postdoc, two PhD students and about six
undergraduate researchers in the area of nucleic acid chemistry. They will learn techniques including organic
synthesis, flash column chromatography, HPLC, NMR, MS, automated DNA synthesis, and gel electrophoresis.
With this project, undergraduate students majoring in our pharmaceutical chemistry, biochemistry &
molecular biology, cheminformatics, and chemistry programs will have a chance to participate in NIH-
supported research. Their interests in pursuing a career in biomedical research will be enhanced. Our
Chemistry Department has required infrastructure and instruments for research and education. This project
will help us to maintain and improve our ability to make continued contributions.
项目概要
使用保护基团和接头合成寡脱氧核苷酸
在中性氧化条件下可裂解
含有潜在反应性亲电子功能的 DNA 类似物可以选择性地形成共价键
通过亲和力诱导反应与目标生物分子(例如 DNA、mRNA 和蛋白质)发生反应。结果,他们
可作为化学生物学等研究领域的探针,有潜力成为新一类
与基于有机小分子和肽的药物相比具有某些优势的治疗剂。
此外,在细胞中还发现了含有碱不稳定基团和亲电基团的DNA衍生物。他们
是重要细胞过程的结果,也可能发挥重要的细胞功能。最后,
碱不稳定和亲电子 DNA 类似物的化学合成在健康相关研究中非常重要。
传统DNA合成技术使用强碱性和亲核试剂,两者不兼容
具有碱不稳定和亲电子基团,不适合该目的。一些报道的方法旨在
解决该问题具有严重的缺点,包括有毒过渡金属污染产品、高
过度使用贵金属的成本、紫外线对 DNA 的损伤、复杂的 DNA 后合成
程序和狭窄的应用程序。该项目的具体目标是开发一种普遍有用的
用于合成含有多种碱不稳定和亲电子的 DNA 类似物的技术
功能。为了实现这一目标,基于 1,3-二硫杂环己烷-2-基-甲氧基的保护基团和连接基
DNA合成过程中将使用有机功能。有了这些基团和连接体,该技术就可以
整个过程不需要使用任何强碱、亲核试剂、过渡金属和紫外光。这
技术也不需要任何繁琐和复杂的 DNA 合成后操作。结果,它
对于含有碱不稳定基团和亲电基团的 DNA 类似物的合成将具有实际用途。我们的
长期目标是开发基于潜在反应性亲电子的新一代反义药物
DNA类似物。该项目的成功完成将为我们实现目标奠定基础。
重要的是,这项新技术也将被世界各地的其他生物医学研究人员广泛使用。
PI认为培养下一代生物医学研究人员与立功同等重要
研究本身。该项目将帮助PI培养一名博士后、两名博士生和约六名
核酸化学领域的本科研究人员。他们将学习包括有机技术在内的技术
合成、快速柱色谱、HPLC、NMR、MS、自动 DNA 合成和凝胶电泳。
通过这个项目,我们药物化学、生物化学和
分子生物学、化学信息学和化学项目将有机会参加 NIH-
支持的研究。他们从事生物医学研究事业的兴趣将会增强。我们的
化学系拥有研究和教育所需的基础设施和仪器。这个项目
将帮助我们保持和提高持续贡献的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiyue Fang其他文献
Shiyue Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiyue Fang', 18)}}的其他基金
Synthesis of Base-Labile and Electrophilic Oligodeoxynucleotides
碱不稳定和亲电子寡脱氧核苷酸的合成
- 批准号:
9376083 - 财政年份:2014
- 资助金额:
$ 33.36万 - 项目类别:
Synthesis of Sensitive Epitranscriptomically Modified RNAs
敏感表观转录组修饰 RNA 的合成
- 批准号:
10730262 - 财政年份:2014
- 资助金额:
$ 33.36万 - 项目类别:
相似国自然基金
抗原非特异性B细胞进入生发中心并实现亲和力成熟的潜力与调控机制
- 批准号:32370941
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向免疫疗法标志物识别的基于多特征融合的肽与MHC亲和力预测研究
- 批准号:62302277
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞内蛋白亲和力标记策略进行新型抗类风湿性关节炎的选择性OGG1小分子抑制剂的发现
- 批准号:82304698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
- 批准号:32360190
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
DNA四面体限域辅助的高亲和力铅笔芯微电极用于早期癌症精准诊断研究
- 批准号:22304062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluoride-Mediated Desilylative Radiosynthesis of 11C-Labeled PET Tracers
氟化物介导的 11C 标记 PET 示踪剂的脱甲硅烷基放射合成
- 批准号:
10610450 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Fibrogenesis Targeted Manganese Based MRI Contrast Agent
纤维发生靶向锰基 MRI 造影剂
- 批准号:
10547505 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Fluoride-Mediated Desilylative Radiosynthesis of 11C-Labeled PET Tracers
氟化物介导的 11C 标记 PET 示踪剂的脱甲硅烷基放射合成
- 批准号:
10442985 - 财政年份:2022
- 资助金额:
$ 33.36万 - 项目类别:
Elucidating pro-metastatic collagen modifying activities of lysyl hydroxylase 2
阐明赖氨酰羟化酶 2 的促转移胶原蛋白修饰活性
- 批准号:
10376870 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别:
Elucidating pro-metastatic collagen modifying activities of lysyl hydroxylase 2
阐明赖氨酰羟化酶 2 的促转移胶原蛋白修饰活性
- 批准号:
10599177 - 财政年份:2021
- 资助金额:
$ 33.36万 - 项目类别: