Neural function of the human memory-associated protein KIBRA: bridging molecular to circuit-level function
人类记忆相关蛋白 KIBRA 的神经功能:桥接分子与电路水平的功能
基本信息
- 批准号:9912847
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAcuteAdolescentAdultAffectAnimalsBehaviorBehavioralBindingBiochemicalBiologicalBipolar DisorderBrainBrain DiseasesBrain regionCognitionCognition DisordersCommunicationComplexCustomDendritic SpinesDevelopmentDiseaseElectrophysiology (science)Financial HardshipFluorescenceFunctional disorderGene ExpressionGenetic PolymorphismGoalsHippocampus (Brain)HumanImmunoprecipitationImpairmentKidneyKnockout MiceLearningLong-Term PotentiationMemoryMemory DisordersMental DepressionMental disordersModificationMolecularMusNeurodevelopmental DisorderNeuronal PlasticityNeuronsNeurophysiology - biologic functionNeurosciencesPerformancePopulationProblem SolvingProcessProteinsRegulationResearchRisk FactorsRodentRoleSchizophreniaSliceSpectrum AnalysisStructureSynapsesSynaptic plasticityTertiary Protein StructureTestingTimeTranslatingVariantautism spectrum disorderbehavior influencecognitive processdensityexperimental studyimaging modalityin vivoinformation processinginsightjuvenile animalmature animalmemory retrievalminiaturizemutantneural circuitnovelprotein complexreceptorrecruitrelating to nervous systemresilienceresponsescaffoldsocialstoichiometrytraffickingyoung adult
项目摘要
Understanding the biological basis of complex behavior is a major challenge in neuroscience, and
disorders of complex brain function exact an enormous social and financial burden. Solving this problem
requires understanding how information processing integrates across molecular, cellular, and circuit levels to
influence behavior, and how disease-associated risk factors impact such information processing. Numerous
studies demonstrate that common variants of KIBRA (enriched in KIdney and BRAin) associate with human
memory performance. KIBRA polymorphisms and gene expression also associate with disorders of complex
brain function including schizophrenia (SCZ) and autism spectrum disorder (ASD), and a strikingly large
proportion of neuronal KIBRA binding partners associate with SCZ, bipolar disorder, and/or ASD. Thus,
KIBRA represents an ideal candidate to reveal molecular mechanisms that control synaptic plasticity and
circuit function responsible for normal cognitive processes that are impaired in mental illness.
We recently identified KIBRA (enriched in KIdney and BRAin) as a regulator of AMPAR trafficking, synaptic
plasticity, and learning and memory in rodents, but the mechanisms by which KIBRA influences these
processes and the impact on circuit dynamics remain unclear. This project aims to elucidate KIBRA function
across multiple levels of information processing via three aims: 1) identify molecular mechanisms by which
KIBRA protein complexes respond to neuronal activity and regulate AMPAR trafficking, 2) determine the
molecular and developmental requirements for KIBRA in bidirectional synaptic plasticity, and 3) establish the
role of KIBRA in regulating circuit dynamics. Intriguingly, despite robust expression of KIBRA in both the
juvenile and adult brain, deficits in synaptic plasticity do not emerge until young adulthood in constitutive
KIBRA knockout (KO) mice, a time course consistent with the onset of neurodevelopmental disorders such as
SCZ and BPD. Thus, our experiments will also evaluate developmental maturity as a factor impacting the
function of KIBRA protein complexes and the neural response to perturbation of KIBRA. To accomplish these
goals, we will use domain mutants to identify KIBRA interactors required for trafficking of endogenous
AMPARs, employ biochemical and advanced imaging methods (Fluorescence Fluctuation Spectroscopy) to
identify activity-regulated dynamics and stoichiometry of KIBRA complexes, examine functional and structural
synaptic plasticity in acute brain slices from constitutive and conditional KIBRA KO mice, and perform in vivo
electrophysiology in freely behaving mice to evaluate the role of KIBRA in behaviorally-driven circuit dynamics.
These proposed studies will reveal critical insight into the function of human-memory- and neurodevelopmental
disorder-associated KIBRA complexes at multiple levels of information processing, with broad implications for
understanding the mechanisms and neurodevelopmental vulnerabilities underlying complex behavior.
了解复杂行为的生物学基础是神经科学的主要挑战,并且
复杂大脑功能的疾病精确的社会和经济负担。解决这个问题
需要了解信息处理如何跨分子,细胞和电路水平整合到
影响行为,以及与疾病相关的风险因素如何影响此类信息处理。很多的
研究表明,基布拉(富含肾脏和大脑)的常见变体与人相关
内存性能。 Kibra多态性和基因表达也与复杂的疾病相关
包括精神分裂症(SCZ)和自闭症谱系障碍(ASD)的大脑功能以及惊人的大型
神经元KIBRA结合伴侣与SCZ,躁郁症和/或ASD相关的比例。因此,
Kibra代表了揭示控制突触可塑性和的分子机制的理想候选者
电路功能负责精神疾病受损的正常认知过程。
我们最近确定Kibra(富含肾脏和大脑)是AMPAR贩运,突触的调节者
啮齿动物中的可塑性以及学习和记忆,但是Kibra影响这些的机制
过程和对电路动力学的影响尚不清楚。该项目旨在阐明Kibra功能
通过三个目标处理多个级别的信息处理:1)确定分子机制
Kibra蛋白复合物对神经元活性做出反应并调节AMPAR运输,2)确定
双向突触可塑性中基布拉的分子和发育要求,3)建立
Kibra在调节电路动力学中的作用。有趣的是,尽管Kibra在这两个方面都强烈地表达
青少年和成人大脑,突触可塑性缺陷直到成年后才会出现
Kibra淘汰(KO)小鼠,这是一种与神经发育障碍的发作一致的时间课程
SCZ和BPD。因此,我们的实验还将评估发展成熟度,这是影响
Kibra蛋白复合物的功能以及对Kibra扰动的神经反应。完成这些
目标,我们将使用域突变体来识别内源性运输所需的kibra互动器
AMPARS,采用生化和高级成像方法(荧光波动光谱)
识别基布拉复合物的活性调节的动力学和化学计量学,检查功能和结构
来自本构和有条件的Kibra KO小鼠的急性脑切片中的突触可塑性,并在体内进行
自由行为小鼠的电生理学评估基布拉在行为驱动的电路动力学中的作用。
这些提出的研究将揭示对人类记忆和神经发育功能的关键见解
在多个级别的信息处理下与障碍相关的Kibra复合物,对
了解复杂行为的基础机制和神经发育脆弱性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LENORA J VOLK其他文献
LENORA J VOLK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LENORA J VOLK', 18)}}的其他基金
Neural function of the human memory-associated protein KIBRA: bridging molecular to circuit-level function
人类记忆相关蛋白 KIBRA 的神经功能:桥接分子与电路水平的功能
- 批准号:
10397575 - 财政年份:2018
- 资助金额:
$ 40.5万 - 项目类别:
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Mechanisms of Hypoxia-Mediated Disturbances in Cerebral Maturation in a Fetal Ovine Model of Maternal Sleep Apnea
母体睡眠呼吸暂停胎羊模型中缺氧介导的大脑成熟障碍的机制
- 批准号:
10608612 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Regulation of nucleus accumbens neurons by sleep and circadian rhythm
睡眠和昼夜节律对伏隔核神经元的调节
- 批准号:
10655471 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Regulation of nucleus accumbens neurons by sleep and circadian rhythm
睡眠和昼夜节律对伏隔核神经元的调节
- 批准号:
10442467 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
The Impact of Fetal Methadone Exposure on Alcohol-Related Behavior and Alcohol-Induced Changes in the Striatum
胎儿美沙酮暴露对酒精相关行为和酒精引起的纹状体变化的影响
- 批准号:
10676310 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Regulation of nucleus accumbens neurons by sleep and circadian rhythm
睡眠和昼夜节律对伏隔核神经元的调节
- 批准号:
10217074 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别: