A Machine Learning Alternative to Beamforming to Improve Ultrasound Image Quality for Interventional Access to the Kidney
波束成形的机器学习替代方案可提高肾脏介入治疗的超声图像质量
基本信息
- 批准号:9913520
- 负责人:
- 金额:$ 23.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAcousticsAdolescentAdultAffectAgeAlgorithmsAnatomyArchitectureAreaAwardBackBiopsyBreast biopsyBypassCancer DetectionCardiacChildClinicalCollaborationsComputer Vision SystemsComputer softwareComputersCustomCystDataDiagnosisDiagnosticElementsEnvironmentEvaluationExcisionFamily suidaeFatty LiverFundingGeometryGoalsHospitalsHumanImageImage-Guided SurgeryImaging PhantomsIndividualInterventionInterventional UltrasonographyKidneyKidney CalculiKnowledgeLearningLiver diseasesLocationMachine LearningMeasurementMeasuresMetalsMethodologyMethodsModelingMorphologic artifactsNeedlesNetwork-basedNoiseNonionizing RadiationNorth AmericaObesityOperative Surgical ProceduresOutputOverweightPainPatientsPrevalenceProceduresProcessRadiology SpecialtyReadabilityResolutionRetroperitoneal SpaceScientistSignal TransductionSourceStructureSurgical InstrumentsTechniquesTestingThickTimeTissuesTrainingTranslationsUltrasonographyUnited StatesUnited States National Institutes of HealthVariantVisualizationWorkalgorithm trainingbaseclinical effectconvolutional neural networkcostdeep learningfetalimage guidedimage guided interventionimaging scientistimprovedin vivoinnovationinstrumentinterestlensmachine learning algorithmmetallicitynovelradiologistsignal processingtool
项目摘要
Project Summary
Despite the widespread prevalence of ultrasound imaging in hospitals today, the clinical utility of ultrasound
guidance is severely hampered by clutter and reverberation artifacts that obscure structures of interest and com-
plicate anatomical measurements. Clutter is particularly problematic in overweight and obese individuals, who
account for 78.6 million adults and 12.8 million children in North America. Similarly, interventional procedures of-
ten require insertion of one or more metal tools, which generate reverberation artifacts that obfuscate instrument
location, orientation, and geometry, while obscuring nearby tissues, thus additionally hampering ultrasound im-
age quality. Although artifacts are problematic, ultrasound continues to persist primarily because of its greatest
strengths (i.e., mobility, cost, non-ionizing radiation, real-time visualization, and multiplanar views) in comparison
to existing image-guidance options, but it would be significantly more useful without problematic artifacts.
Our long-term project goal is to use state-of-the-art machine learning techniques to provide interventional
radiologists with artifact-free ultrasound-based images. We will initially develop a new framework alternative
to the ultrasound beamforming process that removes needle tip reverberations and acoustic clutter caused by
multipath scattering in near-field tissues when guiding needles to the kidney to enable removal of painful kidney
stones. Our first aim will test convolutional neural networks (CNNs) that input raw channel data and output
human readable images with no artifacts caused by multipath scattering and reverberations. A secondary goal
of the CNNs is to learn the minimum number of parameters required to create these new CNN-based images.
Our second aim will validate the trained algorithms with ultrasound data from experimental phantom and ex vivo
tissue. Our third aim will extend our evaluation to ultrasound images of in vivo porcine kidneys. This work is the
first to propose bypassing the entire beamforming process and replacing it with machine learning and computer
vision techniques to remove traditionally problematic noise artifacts and create a fundamentally new type of
artifact-free, high-contrast, high-resolution, ultrasound-based image for guiding interventional procedures.
This work combines the expertise of an imaging scientist, a computer scientist, and an interventional ra-
diologist to explore an untapped, understudied area that is only recently made feasible through improvements
in computing power, advances in computer vision capabilities, and new knowledge about dominant sources of
image degradation. Translation to in vivo cases is enabled by our clinical collaboration with the Department
of Radiology at the Johns Hopkins Hospital. With support from the NIH Trailblazer Award, our team will be
the first to develop these tools and capabilities to eliminate noise artifacts in interventional ultrasound, opening
the door to a new paradigm in ultrasound image formation, which will directly benefit millions of patients with
clearer, easier-to-interpret ultrasound images. Subsequent R01 funding will customize our innovation to addi-
tional application-specific ultrasound procedures (e.g., breast biopsies, cancer detection, autonomous surgery).
项目摘要
尽管当今医院的超声成像的普遍性频率较大,但超声波的临床实用性
混乱和重新产物严重阻碍了指导
PLATE解剖测量。在超重和肥胖的个人中,混乱尤其有问题
在北美,占7860万成人和1,280万儿童。同样,介入程序
十个需要插入一种或多种金属工具,该工具产生重新构造的伪造仪器
位置,方向和几何形状,同时遮盖了附近的组织,从而妨碍了超声检查
年龄质量。尽管文物是有问题的,但由于其最大的
相比
对于现有的图像引导选项,但如果没有问题的伪像,它将更有用。
我们的长期项目目标是使用最先进的机器学习技术来提供介入
具有无伪影超声图像的放射科医生。我们最初将开发一个新的框架替代方案
进行超声梁的过程,该过程消除了针头的回响和由
将针头引导到肾脏时,多径散射在近部组织中
石头。我们的第一个目标将测试输入原始通道数据和输出的卷积神经网络(CNN)
人类可读的图像,没有由多径散射和恢复引起的伪影。次要目标
CNN的最小参数数量是创建这些新的基于CNN的图像所需的最小参数。
我们的第二个目标将通过实验性幻影和Ex Vivo验证训练有素的算法
组织。我们的第三个目标将我们的评估扩展到体内猪肾脏的超声图像。这项工作是
首先提出绕过整个波束形成过程并用机器学习和计算机代替它
视觉技术以消除传统上有问题的噪声伪像,并创建一种新型的新型
无伪影,高对比度,高分辨率,基于超声的图像,用于指导介入程序。
这项工作结合了成像科学家,计算机科学家的专业知识以及介入的RA-
培训医生要探索一个未开发的,被理解的领域,直到最近才通过改进才能可行
在计算能力,计算机视觉能力的进步以及有关主要来源的新知识
图像退化。我们与部门的临床合作启用了转换为体内病例
约翰·霍普金斯医院放射学。在NIH开拓者奖的支持下,我们的团队将是
第一个开发这些工具和功能以消除介入超声波的噪声伪像的功能,打开
超声图像形成中新范式的门,这将直接受益于数百万患者
清晰,更容易解释的超声图像。随后的R01资金将自定义我们的创新
特定于特定的超声操作(例如乳房活检,癌症检测,自主手术)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muyinatu A. Lediju Bell其他文献
Deep Learning-Based Displacement Tracking for Post-Stroke Myofascial Shear Strain Quantification
基于深度学习的位移跟踪,用于中风后肌筋膜剪切应变量化
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Md Ashikuzzaman;Jonny Huang;Steve Bonwit;Azin Etemadimanesh;Preeti Raghavan;Muyinatu A. Lediju Bell - 通讯作者:
Muyinatu A. Lediju Bell
Muyinatu A. Lediju Bell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muyinatu A. Lediju Bell', 18)}}的其他基金
Minimizing Uncertainty in Breast Ultrasound Imaging with Real-Time Coherence-Based Beamforming
通过基于实时相干的波束形成最大限度地减少乳房超声成像的不确定性
- 批准号:
10417922 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Minimizing Uncertainty in Breast Ultrasound Imaging with Real-Time Coherence-Based Beamforming
通过基于实时相干的波束形成最大限度地减少乳房超声成像的不确定性
- 批准号:
10679017 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
A Machine Learning Alternative to Beamforming to Improve Ultrasound Image Quality for Interventional Access to the Kidney
波束成形的机器学习替代方案可提高肾脏介入治疗的超声图像质量
- 批准号:
10170765 - 财政年份:2020
- 资助金额:
$ 23.5万 - 项目类别:
Coherence-Based Photoacoustic Image Guidance of Transsphenoidal Surgeries
基于相干性的光声图像引导经蝶手术
- 批准号:
8891530 - 财政年份:2015
- 资助金额:
$ 23.5万 - 项目类别:
Coherence-Based Photoacoustic Image Guidance of Transsphenoidal Surgeries
基于相干性的光声图像引导经蝶手术
- 批准号:
9043878 - 财政年份:2015
- 资助金额:
$ 23.5万 - 项目类别:
相似国自然基金
航天低温推进剂加注系统气液状态声学监测技术研究
- 批准号:62373276
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于声学原位测试的金属表面液滴弹跳次数仿生调控
- 批准号:52350039
- 批准年份:2023
- 资助金额:80 万元
- 项目类别:专项基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
- 批准号:82302874
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非厄米声学晶格系统中的拓扑物理研究
- 批准号:12374418
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
海洋声学功能材料发展战略研究
- 批准号:52342304
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:专项项目
相似海外基金
Neural and behavioral mechanisms of song learning in zebra finches
斑胸草雀鸣叫学习的神经和行为机制
- 批准号:
10678601 - 财政年份:2023
- 资助金额:
$ 23.5万 - 项目类别:
Ready to CONNECT: Conversation and Language in Autistic Teens
准备好联系:自闭症青少年的对话和语言
- 批准号:
10807563 - 财政年份:2023
- 资助金额:
$ 23.5万 - 项目类别:
Genetic rescue of a developmental hearing loss-induced spectral processing deficit
发育性听力损失引起的频谱处理缺陷的基因拯救
- 批准号:
10537264 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Evaluation of a structure-function model for auditory consequences of impact acceleration brain injury and protection via the olivocochlear system
冲击加速脑损伤的听觉后果的结构功能模型评估以及通过橄榄耳蜗系统的保护
- 批准号:
10605573 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别:
Deciphering the neural mechanisms of music processing in the developing brain: A multi-feature and multi-cultural comparison
解读发育中大脑中音乐处理的神经机制:多特征和多文化比较
- 批准号:
10798728 - 财政年份:2022
- 资助金额:
$ 23.5万 - 项目类别: