Image Quality Improvement and Performance Assessment of Dedicated Breast CT
专用乳腺CT的图像质量改进和性能评估
基本信息
- 批准号:9899937
- 负责人:
- 金额:$ 19.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAmerican Cancer SocietyAnatomyBiopsyBreastBreast Cancer DetectionBreast Cancer Early DetectionBreast Cancer PatientBreast MicrocalcificationCancer DiagnosticsCharacteristicsClinicalClinical TrialsContrast MediaDevelopmentDiagnosisDiagnosticDiagnostic ProcedureDiseaseEarly DiagnosisEnsureHealthcareImageImage AnalysisImaging technologyInformation DistributionInjectionsKineticsLesionMalignant NeoplasmsMammographyMethodsModalityMorphologic artifactsNatureNeoadjuvant TherapyPatient imagingPatientsPerformancePhysiciansProbabilityProcessRadiopharmaceuticalsResolutionRoentgen RaysShapesSignal TransductionSurvival RateTestingThree-Dimensional ImageTimeTissuesUltrasonographyVisualizationWomanWorkX-Ray Computed Tomographybasebreast cancer diagnosisbreast densitybreast exambreast imagingcancer imagingchemotherapyclinical applicationclinical diagnosticsclinical efficacyclinical imagingcontrast enhanceddensitydetectordiagnostic accuracydigital imagingimage processingimage reconstructionimaging capabilitiesimaging modalityimaging studyimprovedmalignant breast neoplasmnovelnovel imaging technologyprospectivepublic health relevancequantitative imagingradiologistreconstructionresponsetomographytomosynthesistumortwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): The diagnostic stage of early detection of breast cancer is currently far from perfect. With the current clinical imaging technology used for diagnostic work-up of suspicious lesions detected at breast cancer screening, approximately one out of six breast cancers are missed. This is in addition to the one out of six breast cancers already missed at the breast cancer screening stage. In addition, the rate of false positive diagnostic work-ups results in more than two out of three biopsies yielding a negative result. Clearly there is room for improvement in this very important clinical diagnostic procedure. Of the many novel imaging technologies being developed for breast cancer imaging, dedicated breast computed tomography (BCT) is one of very few that results in a true tomographic image of the breast with high contrast resolution and does not require the injection of a contrast agent or radiopharmaceutical. This makes it ideal for use as the frontline imaging technology for working up suspicious lesions detected during breast cancer screening or during clinical breast examination. In this project we propose to perform a prospective clinical trial to compare the accuracy of BCT to the current standard imaging technologies for diagnosis of breast cancer in patients with a suspicious lesion identified during breast cancer screening. To maximize the image quality of BCT we will apply to the BCT novel algorithms we have developed that result in more accurate, higher quality images with true quantitative characteristics. These algorithms involve the correction of the acquired BCT projections due to the presence of x-ray scatter, and a novel reconstruction algorithm that correctly represents the image acquisition process as one involving a spectrum of x-ray energy, rather than mono-energetic x-rays. Successful completion of this project will help introduce BCT to the clinical realm by characterizing its true potential or impact in the breast cancer diagnosis stage, where we expect it will result in fewer missed breast cancers and negative biopsies.
描述(由适用提供):乳腺癌早期发现的诊断阶段目前远非完美。由于目前使用的临床成像技术用于诊断乳腺癌筛查中可疑水平的诊断检查,因此遗失了六分之一的乳腺癌。这是在乳腺癌筛查阶段已经错过的六个乳腺癌中的一种。此外,假阳性诊断检查的速率导致三个活检中有超过两次产生负面结果。显然,这种非常重要的临床诊断程序有改善的余地。在为乳腺癌成像开发的许多新型成像技术中,专用的乳房计算机断层扫描(BCT)是很少的乳腺层析成像之一,它导致具有高对比度分辨率的乳房的真正层析成像图像,并且不需要注射对比剂或放射性药物。这使其非常适合用作乳腺癌筛查或临床乳房检查期间检测到的可疑病变的一线成像技术。在该项目中,我们建议进行一项前瞻性临床试验,以将BCT的准确性与当前标准成像技术进行乳腺癌诊断,以抑制乳腺癌筛查期间鉴定出可疑病变的患者。为了最大化BCT的图像质量,我们将应用于BCT新颖的算法,我们开发了具有真正定量特征的更准确,更高质量的图像。这些算法涉及由于存在X射线散射而校正所获得的BCT项目,以及一种新颖的重建算法,该算法正确地代表了图像采集过程是涉及一系列X射线能量的X射线能量,而不是单一能量X射线。该项目的成功完成将通过表征其在乳腺癌诊断阶段的真正潜力或影响来帮助将BCT引入临床领域,我们预计这将导致较少的乳腺癌和阴性活检。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Development of 3D patient-based super-resolution digital breast phantoms using machine learning.
- DOI:10.1088/1361-6560/aae78d
- 发表时间:2018-11-12
- 期刊:
- 影响因子:3.5
- 作者:Caballo M;Fedon C;Brombal L;Mann R;Longo R;Sechopoulos I
- 通讯作者:Sechopoulos I
Deep learning-based segmentation of breast masses in dedicated breast CT imaging: Radiomic feature stability between radiologists and artificial intelligence.
- DOI:10.1016/j.compbiomed.2020.103629
- 发表时间:2020-03
- 期刊:
- 影响因子:7.7
- 作者:
- 通讯作者:
The compressed breast during mammography and breast tomosynthesis: in vivo shape characterization and modeling.
- DOI:10.1088/1361-6560/aa7cd0
- 发表时间:2017-08-07
- 期刊:
- 影响因子:3.5
- 作者:Rodríguez-Ruiz A;Agasthya GA;Sechopoulos I
- 通讯作者:Sechopoulos I
Deep learning reconstruction of digital breast tomosynthesis images for accurate breast density and patient-specific radiation dose estimation.
数字乳腺断层合成图像的深度学习重建,用于准确的乳腺密度和患者特定的辐射剂量估计。
- DOI:10.1016/j.media.2021.102061
- 发表时间:2021
- 期刊:
- 影响因子:10.9
- 作者:Teuwen,Jonas;Moriakov,Nikita;Fedon,Christian;Caballo,Marco;Reiser,Ingrid;Bakic,Pedrag;García,Eloy;Diaz,Oliver;Michielsen,Koen;Sechopoulos,Ioannis
- 通讯作者:Sechopoulos,Ioannis
An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images.
- DOI:10.1002/mp.12920
- 发表时间:2018-06
- 期刊:
- 影响因子:3.8
- 作者:Caballo M;Boone JM;Mann R;Sechopoulos I
- 通讯作者:Sechopoulos I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ioannis Sechopoulos其他文献
Ioannis Sechopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ioannis Sechopoulos', 18)}}的其他基金
Image Quality Improvement and Performance Assessment of Dedicated Breast CT
专用乳腺CT的图像质量改进和性能评估
- 批准号:
8885449 - 财政年份:2015
- 资助金额:
$ 19.66万 - 项目类别:
Image Quality Improvement and Breast Compression Reduction in Breast Tomosynthesi
乳房断层合成中的图像质量改善和乳房压迫减少
- 批准号:
8441522 - 财政年份:2012
- 资助金额:
$ 19.66万 - 项目类别:
Image Quality Improvement and Breast Compression Reduction in Breast Tomosynthesi
乳房断层合成中的图像质量改善和乳房压迫减少
- 批准号:
8616734 - 财政年份:2012
- 资助金额:
$ 19.66万 - 项目类别:
Image Quality Improvement and Breast Compression Reduction in Breast Tomosynthesi
乳房断层合成中的图像质量改善和乳房压迫减少
- 批准号:
8217892 - 财政年份:2012
- 资助金额:
$ 19.66万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
3-D Computer Modeling for Optimizing Body Image following Breast Reconstruction
用于优化乳房重建后身体形象的 3D 计算机建模
- 批准号:
7987685 - 财政年份:2010
- 资助金额:
$ 19.66万 - 项目类别:
3-D Computer Modeling for Optimizing Body Image following Breast Reconstruction
用于优化乳房重建后身体形象的 3D 计算机建模
- 批准号:
8677769 - 财政年份:2010
- 资助金额:
$ 19.66万 - 项目类别:
3-D Computer Modeling for Optimizing Body Image following Breast Reconstruction
用于优化乳房重建后身体形象的 3D 计算机建模
- 批准号:
8117257 - 财政年份:2010
- 资助金额:
$ 19.66万 - 项目类别:
3-D Computer Modeling for Optimizing Body Image following Breast Reconstruction
用于优化乳房重建后身体形象的 3D 计算机建模
- 批准号:
8471073 - 财政年份:2010
- 资助金额:
$ 19.66万 - 项目类别:
3-D Computer Modeling for Optimizing Body Image following Breast Reconstruction
用于优化乳房重建后身体形象的 3D 计算机建模
- 批准号:
8269013 - 财政年份:2010
- 资助金额:
$ 19.66万 - 项目类别: