Training in Biomedical Discovery from Large Scale Data Sets
大规模数据集生物医学发现培训
基本信息
- 批准号:7492915
- 负责人:
- 金额:$ 12.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-30 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdvertisingAdvisory CommitteesAlgorithmsAmericanAnimal ModelAnnual ReportsApoptosisApplications GrantsAppointmentArchivesAreaArtificial IntelligenceArtsAwardBacteriaBehaviorBiochemistryBioinformaticsBiologicalBiological Neural NetworksBiological ProcessBiological SciencesBiologyBiomedical ComputingBiomedical ResearchBiophysicsBiotechnologyCase StudyCell physiologyCellsCellular biologyChromosome abnormalityCollaborationsCommittee MembersCommunicable DiseasesCommunitiesComplexComputational BiologyComputational Molecular BiologyComputational ScienceComputational algorithmComputer AssistedConditionConsultationsCounselingCountryCryoelectron MicroscopyCytoskeletonDataData SetData SourcesDatabasesDepthDevelopmentDigital Signal ProcessingDisciplineDiseaseDissectionDoctor of PhilosophyDocumentationEducational CurriculumEducational StatusEducational process of instructingEducational workshopEndoplasmic ReticulumEngineeringEnrollmentEnsureEquilibriumEvaluationEventFacility Construction Funding CategoryFacultyFeedbackFigs - dietaryFosteringFoundationsFourier TransformFrequenciesFundingFutureFuture GenerationsGene ChipsGene ExpressionGenerationsGenesGeneticGenetic MedicineGenetic ModelsGenetics and MedicineGenomeGenomicsGoalsGolgi ApparatusGrantGrowthHandHeredityHome environmentImageImageryImaging technologyIn Situ HybridizationIndividualInstitutionInterdisciplinary StudyInternationalInternshipsInterventionInterviewIon TransportJournalsKnowledgeLaboratoriesLanguageLearningLengthLettersLibrariesLifeMachine LearningMalignant NeoplasmsMapsMarketingMathematicsMeasurementMedical centerMembraneMentorsMethodologyMethodsMicroscopyMiningMitochondriaModelingMolecularMolecular BiologyMolecular StructureMonitorMusNamesNatureNumbersOccupationsOncogenesOntologyOperative Surgical ProceduresOpticsOrganismPaperPathway interactionsPatternPattern RecognitionPeer GroupPeer ReviewPersonsPhysiologicalPlayPliabilityPostdoctoral FellowPreparationPrincipal Component AnalysisPrincipal InvestigatorPrintingProcessProgram EvaluationProtein Interaction MappingProtein-Protein Interaction MapProteinsProteomicsPublic HealthPublicationsPublished CommentRangeRecruitment ActivityRegulator GenesReportingResearchResearch PersonnelResearch Project GrantsResearch TrainingResolutionResourcesRiceRoboticsRoleRotationSamplingSchoolsScienceScientistSecureSemanticsSequence AnalysisSeriesShapesSideSignal PathwaySignal TransductionSocial InteractionSocietiesSourceSpecimenStandards of Weights and MeasuresStructureStudentsSuggestionSystemSystems BiologyTechniquesTechnologyTestingTexasThinkingTimeTissuesTrainingTraining ActivityTraining ProgramsTranslatingUniversitiesUpdateVisionWeekWorkWritingYeastsbasebiomedical scientistcancer cellcancer typecareercomputer codecomputer programcomputer sciencecomputerized data processingcomputerized toolsconceptcostdata acquisitiondata integrationdata managementdata miningdata modelingdaydensitydesigndesiredrinkingexperiencefallsfunctional genomicsgulf coasthuman diseaseimage processingimage reconstructionindexinginterdisciplinary collaborationinterestknowledge baselecturesmacromolecular assemblymacromoleculemecarzolemembermodels and simulationnovelnovel strategiesnucleocytoplasmic transportparallel architecturepeerposterspre-doctoralprogramsrelating to nervous systemrepositoryshared memorysimulationskillssoftware developmentstatisticsstructural biologysymposiumtheoriestoolvector
项目摘要
DESCRIPTION (provided by applicant): The development of genomics, proteomics and advanced imaging technology has resulted in the accumulation of vast amounts of biological data. As large scale data sets become predominant in biomedical research, we are approaching a paradigm shift in which the process of discovery is data-driven, and in which data are the source of hypotheses as well as the means for testing them. These masses of data are rich sources of information; however, extracting meaningful information can be a daunting challenge, and often presents a bottleneck for the discovery process. Thus, there is a pressing need for interdisciplinary training of scientists who understand the data, how they are generated, and what they are used for. In addition, these scientists must become developers and highly skilled users of the new computational tools necessary to analyze large data sets. The goal of this program is to train students to become proficient in the following areas: 1. Data acquisition. This will include knowledge of the methods of genomics, proteomics and imaging. 2. Computation. This will include knowledge of mathematical and statistical algorithms, implementation of effective computer codes as well as an emphasis on methods of data warehousing in relational, deductive and other databases. 3. Data integration. This is a critical area that involves extracting useful information from the heterogeneous data sets at various spatial and temporal scales. It will include knowledge of methods of modeling and simulation of systems from the molecular to the organism level. There will also be an emphasis on computational data mining methods. The core of the program will be research-based training in interdisciplinary teams under the guidance of at least two mentors from disparate disciplines (i.e., computational/mathematical and biomedical sciences). Training activities will consist of specialized didactic coursework as well as seminars, journal clubs and a student-faculty retreat. This will be a cross-institutional training program with faculty drawn from departments ranging from computer science and statistics to genetics and medicine, in five participating institutions in the Gulf Coast Consortia in the Houston Area. The training of scientists equipped to manage and extract information from large data sets will greatly facilitate biological discovery in areas such as infectious disease and cancer and therefore this training program will have a direct, positive impact on public health.
描述(申请人提供):基因组学、蛋白质组学和先进成像技术的发展导致了大量生物数据的积累。随着大规模数据集在生物医学研究中占据主导地位,我们正在接近一种范式转变,其中发现过程是数据驱动的,数据是假设的来源以及测试假设的手段。这些海量数据是丰富的信息来源;然而,提取有意义的信息可能是一项艰巨的挑战,并且常常成为发现过程的瓶颈。因此,迫切需要对了解数据、数据生成方式以及数据用途的科学家进行跨学科培训。此外,这些科学家必须成为分析大型数据集所需的新计算工具的开发人员和高技能用户。该计划的目标是培养学生精通以下领域: 1. 数据采集。这将包括基因组学、蛋白质组学和成像方法的知识。 2.计算。这将包括数学和统计算法的知识、有效计算机代码的实现以及对关系数据库、演绎数据库和其他数据库中数据仓库方法的强调。 3.数据整合。这是一个关键领域,涉及从不同空间和时间尺度的异构数据集中提取有用信息。它将包括从分子到有机体水平的系统建模和模拟方法的知识。还将强调计算数据挖掘方法。该计划的核心将是在至少两名来自不同学科(即计算/数学和生物医学科学)的导师的指导下,对跨学科团队进行基于研究的培训。培训活动将包括专门的教学课程以及研讨会、期刊俱乐部和师生静修会。这将是一个跨机构培训计划,教职员工来自计算机科学、统计学、遗传学和医学等各个部门,分布在休斯顿地区墨西哥湾沿岸联盟的五个参与机构中。对能够管理和从大数据集中提取信息的科学家进行培训将极大地促进传染病和癌症等领域的生物发现,因此该培训计划将对公众健康产生直接、积极的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Palzkill其他文献
Timothy Palzkill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy Palzkill', 18)}}的其他基金
Using DNA-encoded Chemical Libraries to Develop Inhibitors of the MCR-1 Colistin Resistance Enzyme
使用 DNA 编码的化学文库开发 MCR-1 粘菌素抗性酶抑制剂
- 批准号:
10433324 - 财政年份:2022
- 资助金额:
$ 12.4万 - 项目类别:
Using DNA-encoded Chemical Libraries to Develop Inhibitors of the MCR-1 Colistin Resistance Enzyme
使用 DNA 编码的化学文库开发 MCR-1 粘菌素抗性酶抑制剂
- 批准号:
10613563 - 财政年份:2022
- 资助金额:
$ 12.4万 - 项目类别:
Discovery of Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries
使用 DNA 编码化学文库发现碳青霉烯酶抑制剂
- 批准号:
10538574 - 财政年份:2019
- 资助金额:
$ 12.4万 - 项目类别:
Discovery of Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries
使用 DNA 编码化学文库发现碳青霉烯酶抑制剂
- 批准号:
10311533 - 财政年份:2019
- 资助金额:
$ 12.4万 - 项目类别:
Discovery of Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries
使用 DNA 编码化学文库发现碳青霉烯酶抑制剂
- 批准号:
10078242 - 财政年份:2019
- 资助金额:
$ 12.4万 - 项目类别:
Analysis of metallo-beta-lactamase sequence constraints at high resolution
高分辨率金属-β-内酰胺酶序列限制分析
- 批准号:
8660631 - 财政年份:2013
- 资助金额:
$ 12.4万 - 项目类别:
Analysis of metallo-beta-lactamase sequence constraints at high resolution
高分辨率金属-β-内酰胺酶序列限制分析
- 批准号:
8557707 - 财政年份:2013
- 资助金额:
$ 12.4万 - 项目类别:
Analysis of metallo-beta-lactamase sequence constraints at high resolution
高分辨率金属-β-内酰胺酶序列限制分析
- 批准号:
9262855 - 财政年份:2013
- 资助金额:
$ 12.4万 - 项目类别:
Analysis of metallo-beta-lactamase sequence constraints at high resolution
高分辨率金属-β-内酰胺酶序列限制分析
- 批准号:
8829744 - 财政年份:2013
- 资助金额:
$ 12.4万 - 项目类别:
Development of Protein-Based Beta-lactam Antibiotic Resistance Diagnostics
基于蛋白质的 β-内酰胺抗生素耐药性诊断的开发
- 批准号:
8112233 - 财政年份:2011
- 资助金额:
$ 12.4万 - 项目类别:
相似海外基金
Integrated Interdisciplinary Training in Computational Neuroscience
计算神经科学综合跨学科培训
- 批准号:
7293610 - 财政年份:2006
- 资助金额:
$ 12.4万 - 项目类别:
Training in Biomedical Discovery from Large Scale Data Sets
大规模数据集生物医学发现培训
- 批准号:
7293588 - 财政年份:2006
- 资助金额:
$ 12.4万 - 项目类别:
Alzheimer's Disease Neuroimaging Initiative (ADNI4)
阿尔茨海默病神经影像倡议 (ADNI4)
- 批准号:
10495150 - 财政年份:2004
- 资助金额:
$ 12.4万 - 项目类别:
Alzheimer's Disease Neuroimaging Initiative (ADNI4)
阿尔茨海默病神经影像倡议 (ADNI4)
- 批准号:
10704643 - 财政年份:2004
- 资助金额:
$ 12.4万 - 项目类别:
Neuro-physical-computational Sciences Graduate Training(RMI)
神经物理计算科学研究生培训(RMI)
- 批准号:
7483052 - 财政年份:2004
- 资助金额:
$ 12.4万 - 项目类别: