Structural Characterization of the TOC Protein Translocon Machinery

TOC 蛋白易位机的结构表征

基本信息

  • 批准号:
    9900017
  • 负责人:
  • 金额:
    $ 31.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

Project Summary Infectious diseases cause widespread sickness throughout the world each year and are the second leading cause of death, particularly in underdeveloped countries. And with the emergence of multi-drug resistance strains, the necessity for new, more effective, and more sustainable therapies is immediate. Included in these infectious diseases are the apicomplexa which includes Toxoplasma gondii and Plasmodium falciparum, the parasites causing toxoplasmosis and malaria, respectively. These parasites contain a unique plastid-like organelle called an apicoplast which contains four membranes and therefore have evolved a complex system for importing and exporting proteins across these membranes. These essential import/export machineries are ideal targets for novel antibiotics against these pathogens. Many of these translocon machineries are also conserved in other higher eukaryotic organelles such as chloroplasts and mitochondria, where a large majority of genes are nuclear encoded and therefore must be imported post-translationally. One such machinery is the conserved translocon of the outer membrane in chloroplasts (TOC) complex from Arabidopsis thaliana, a model system for studying chloroplast biology. The TOC complex consists of primarily three components, Toc33/34 and Toc159, both GTPases containing an N-terminal transmembrane helix anchoring them into the outer membrane, and Toc75, a 16- stranded β-barrel membrane-spanning translocon. While mechanistic models have been put forth for how the TOC complex functions, they have remained largely unproven due to the lack of structural characterization, which is needed to stitch together all the pieces of the mechanistic puzzle. In our studies, we will use biophysical methods, X-ray crystallography, cryo-electron microscopy, and small-angle X-ray scattering to structurally and functionally characterize this specialized machinery. Our results will fill a longstanding gap in the field and will be essential for piecing together the mechanism for how the TOC complex functions in protein import in apicomplexa and chloroplasts.
项目概要 传染病每年在全世界造成广泛的疾病,是第二大疾病 死亡的主要原因,特别是在不发达国家。 由于耐药菌株的存在,迫切需要新的、更有效、更可持续的疗法。 这些传染病包括尖复合体,其中包括弓形虫和 恶性疟原虫,分别引起弓形虫病和疟疾的寄生虫。 含有一种独特的类质体细胞器,称为顶端质体,它包含四个膜,因此 已经进化出一个复杂的系统,用于跨这些膜输入和输出蛋白质。 重要的进出口机械是针对这些病原体的新型抗生素的理想目标。 这些易位子机器也保存在其他高等真核细胞器中,例如 叶绿体和线粒体,其中大部分基因是核编码的,因此必须 翻译后输入的一种机制是外膜的保守易位子。 来自拟南芥的叶绿体 (TOC) 复合物,这是研究叶绿体生物学的模型系统。 TOC 复合物主要由三个组分组成:Toc33/34 和 Toc159,均为 GTPases 包含将它们锚定到外膜的 N 端跨膜螺旋,以及 Toc75(一种 16- 搁浅的β-桶跨膜易位子已经提出了机制模型。 TOC 复杂的功能,由于缺乏结构性,它们在很大程度上仍未得到证实。 在我们的研究中,需要将机械拼图的所有部分拼凑在一起。 我们将使用生物物理方法、X射线晶体学、冷冻电子显微镜和小角度X射线 我们的结果将填补这一特殊机械的结构和功能特征。 该领域长期存在的差距,对于整合 TOC 的机制至关重要 顶端复合体和叶绿体中蛋白质输入的复杂功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Noinaj其他文献

Nicholas Noinaj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Noinaj', 18)}}的其他基金

Unraveling the mechanism by which the BAM complex mediates OMP biogenesis
揭示 BAM 复合物介导 OMP 生物发生的机制
  • 批准号:
    9974536
  • 财政年份:
    2019
  • 资助金额:
    $ 31.58万
  • 项目类别:
Unraveling the mechanism by which the BAM complex mediates OMP biogenesis
揭示 BAM 复合物介导 OMP 生物发生的机制
  • 批准号:
    10415950
  • 财政年份:
    2019
  • 资助金额:
    $ 31.58万
  • 项目类别:
Unraveling the mechanism by which the BAM complex mediates OMP biogenesis
揭示 BAM 复合物介导 OMP 生物发生的机制
  • 批准号:
    10163875
  • 财政年份:
    2019
  • 资助金额:
    $ 31.58万
  • 项目类别:
Structural Characterization of the TOC Protein Translocon Machinery
TOC 蛋白易位机的结构表征
  • 批准号:
    10376194
  • 财政年份:
    2018
  • 资助金额:
    $ 31.58万
  • 项目类别:
The role of BamA in the biogenesis of beta-barrel membrane proteins
BamA 在 β-桶膜蛋白生物合成中的作用
  • 批准号:
    8767875
  • 财政年份:
    2015
  • 资助金额:
    $ 31.58万
  • 项目类别:
The role of BamA in the biogenesis of beta-barrel membrane proteins
BamA 在 β-桶膜蛋白生物发生中的作用
  • 批准号:
    9110832
  • 财政年份:
    2015
  • 资助金额:
    $ 31.58万
  • 项目类别:

相似海外基金

The functional role of photosynthesis-related genes in non-photosynthetic symbionts of corals
光合作用相关基因在珊瑚非光合作用共生体中的功能作用
  • 批准号:
    22KF0361
  • 财政年份:
    2023
  • 资助金额:
    $ 31.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Deciphering the composite S-phase in Toxoplasma gondii
解读弓形虫复合 S 期
  • 批准号:
    10744528
  • 财政年份:
    2023
  • 资助金额:
    $ 31.58万
  • 项目类别:
Ribosome structure determination from Apicomplexan parasites
顶复门寄生虫的核糖体结构测定
  • 批准号:
    10726704
  • 财政年份:
    2023
  • 资助金额:
    $ 31.58万
  • 项目类别:
Host cell membrane perforation during invasion by Toxoplasma gondii
弓形虫入侵过程中宿主细胞膜穿孔
  • 批准号:
    10587658
  • 财政年份:
    2023
  • 资助金额:
    $ 31.58万
  • 项目类别:
The unconventional Ark3 cluster in Toxoplasma gondii
弓形虫中非常规的 Ark3 簇
  • 批准号:
    10511468
  • 财政年份:
    2022
  • 资助金额:
    $ 31.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了