CRCNS: Dynamics of Gain Recalibration in the Hippocampal-Entorhinal Path Integration System

CRCNS:海马-内嗅路径集成系统中增益重新校准的动力学

基本信息

  • 批准号:
    9900870
  • 负责人:
  • 金额:
    $ 35.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

The striking spatial correlates of hippocampal place cells and grid cells have provided unique insights into how the brain constructs internal, cognitive representations of the environment and uses these representations to guide behavior. These spatially selective cells are influenced by both self-motion signals and by external sensory landmarks. Self-motion signals provide the basis for a path integration computation, in which the hippocampal system tracks the animal's location by integrating its movement vector (speed and direction) over time to continuously update a position signal on an internal "cognitive map." To prevent accumulation of error, it is crucial that this endogenous spatial representation be anchored by stable, external sensory cues, such as individual landmarks and environmental boundaries. Accurate path integration requires that an internal representation of position be updated in precise agreement with the animal's displacement in the world. What if the relation between position calculated by self-motion cues and position defined by landmark cues is altered, e.g. during development (slow time scale) or due to injury (fast time scale)? Does the animal recalibrate the internal gain between representations of its movement and the updating of the representation of its position in the brain? We hypothesize that this gain must be learned by reference to visual feedback. We constructed an augmented reality system that allows precise, closed-loop control of the visual environment as rats move through physical space and provide evidence that the path integration system can indeed be recalibrated. We propose a collaborative research program to investigate plasticity of the path integration gain at multiple neural levels using combined theoretical, engineering, and experimental approaches. We will combine mathematical analysis, biologically inspired attractor network theory, and principles derived from engineering to develop the first models of how the path integration system dynamically recalibrates itself in response to sensory feedback. We will perform recordings from the hippocampus and medial entorhinal cortex to provide data to constrain and test these models. The combined expertise of the Pl and Co­ Investigators in electrophysiological recordings of the hippocampal system, engineering, and mathematical neuroscience will propel the theory forward to explain the network dynamics and functional implications of this ethologically critical form of neural plasticity.
海马位置细胞和网格细胞的显着空间相关性为大脑如何构建环境的内部认知表征并使用这些表征来指导行为提供了独特的见解。这些空间选择性细胞受到自我运动信号和外部信号的影响。自我运动信号为路径积分计算提供了基础,其中海马系统通过随着时间的推移积分其运动矢量(速度和方向)来跟踪动物的位置,以不断更新内部“认知”上的位置信号。地图。”为了防止误差累积,至关重要的是,这种内源性空间表征必须由稳定的外部感官线索(例如单个地标和环境边界)锚定。 准确的路径整合要求位置的内部表示与动物在世界中的位移精确一致地更新,如果在发育过程中(例如,慢时间尺度)由自运动线索计算的位置与由地标线索定义的位置之间的关系会怎样。 )还是由于受伤(快速时间尺度)?动物是否会重新校准其运动表示和大脑中位置表示更新之间的内部增益?我们认为这种增益必须通过参考视觉反馈来学习。我们构建了一个增强现实系统允许在老鼠穿过物理空间时对视觉环境进行精确的闭环控制,并提供路径积分系统确实可以重新校准的证据,我们提出了一个合作研究计划来研究多个路径积分增益的可塑性。我们将结合数学分析、受生物学启发的吸引子网络理论和工程原理来开发路径集成系统如何动态地重新校准自身以响应感官反馈的第一个模型。将执行录音海马体和内侧内嗅皮层提供数据来约束和测试这些模型,PI 和 Co 研究人员在海马系统电生理记录、工程学和神经数学科学方面的综合专业知识将推动该理论向前发展,以解释网络动力学和功能含义。这种具有道德批判性的神经可塑性形式。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noah John Cowan其他文献

Noah John Cowan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noah John Cowan', 18)}}的其他基金

CRCNS: Dynamics of Gain Recalibration in the Hippocampal-Entorhinal Path Integration System
CRCNS:海马-内嗅路径集成系统中增益重新校准的动力学
  • 批准号:
    10380673
  • 财政年份:
    2018
  • 资助金额:
    $ 35.74万
  • 项目类别:
A Control Theoretic Approach to Addressing Hippocampal Function
解决海马功能的控制理论方法
  • 批准号:
    9364446
  • 财政年份:
    2017
  • 资助金额:
    $ 35.74万
  • 项目类别:
A Control Theoretic Approach to Addressing Hippocampal Function
解决海马功能的控制理论方法
  • 批准号:
    9919015
  • 财政年份:
    2017
  • 资助金额:
    $ 35.74万
  • 项目类别:
A Control Theoretic Approach to Addressing Hippocampal Function
解决海马功能的控制理论方法
  • 批准号:
    9128055
  • 财政年份:
    2015
  • 资助金额:
    $ 35.74万
  • 项目类别:
Steering Flexible Needles in Soft Tissue
在软组织中引导柔性针
  • 批准号:
    7857940
  • 财政年份:
    2007
  • 资助金额:
    $ 35.74万
  • 项目类别:

相似国自然基金

通信协议影响下受限运动建模与估计问题研究
  • 批准号:
    62173068
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
抱团取暖:中小股东签订一致行动人协议的动因与影响研究
  • 批准号:
    72002086
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
时空视角下的对赌协议与企业并购:绩效、风险及影响机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
调度协议影响下的单主多从遥操作系统建模与控制
  • 批准号:
    61903030
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
企业人才引进背景下个别协议的影响与作用机制研究:旁观者同事视角
  • 批准号:
    71802074
  • 批准年份:
    2018
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 35.74万
  • 项目类别:
Anterior Insula Projections for Alcohol Drinking/Anxiety Interactions in Female and Male Rats
雌性和雄性大鼠饮酒/焦虑相互作用的前岛叶预测
  • 批准号:
    10608759
  • 财政年份:
    2023
  • 资助金额:
    $ 35.74万
  • 项目类别:
Dissemination and implementation of DIGEST™ as an evidence-based measurement tool for dysphagia in cancer
传播和实施 DIGEST™ 作为癌症吞咽困难的循证测量工具
  • 批准号:
    10584824
  • 财政年份:
    2023
  • 资助金额:
    $ 35.74万
  • 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
  • 批准号:
    10657958
  • 财政年份:
    2023
  • 资助金额:
    $ 35.74万
  • 项目类别:
Candida and Candidiasis Conference 2023
2023 年念珠菌和念珠菌病会议
  • 批准号:
    10682982
  • 财政年份:
    2023
  • 资助金额:
    $ 35.74万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了