Optimizing and Learning Strategies for Protein Docking
蛋白质对接的优化和学习策略
基本信息
- 批准号:9903730
- 负责人:
- 金额:$ 19.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBehaviorBindingBiologicalClassificationCollaborationsCommunitiesComplexConsumptionDetectionDevelopmentDimensionsDockingFormulationFrequenciesGoalsHandIndividualLeadLearningMethodologyMethodsMolecular ConformationNational Institute of General Medical SciencesNeighborhoodsPhasePotential EnergyProcessProteinsProtocols documentationResearch PersonnelStructureTechniquesTimeUnited States National Institutes of Healthbaseimprovedlearning strategymathematical algorithmmathematical methodsmathematical modelnext generationnovelstructural biologythree dimensional structuretool
项目摘要
Protein docking is defined as predicting the three-dimensional structure of the docked complex based on
knowledge of the structure of the components. Experimental techniques for this purpose are often expensive,
time-consuming, and in some cases, not feasible; hence the need for computational docking methods. The
problem of finding the docked conformation is generally formulated as a minimization of an energy-based scoring
function. This function is composed of multiple energy terms that act in different space scales and demonstrate
multi-frequency behavior leading to an enormous number of local minima. Furthermore, the process of
docking/binding involves conformational changes to the component molecules leading to a highly complex search
space for the optimization problem. These features render the optimization problem extremely difficult.
Most state-of-the art docking protocols employ a multi-stage and multi-scale approach. They begin with a
global search of the conformational space using a simplified scoring function to identify promising areas of the
space, followed by local optimization using a more detailed and complete scoring function to remove clashes. In
the final so-called refinement stage, promising areas found in the first two stages are explored further using a
medium space-scale search to provide a set of final solutions. It has recently become evident that due to the
inaccuracy of the scoring function/energy potentials, the optimization stage outlined above invariably generates a
number of false positives at the final phase, namely1 conformations that have low score but are far from the native
conformation. This motivates the introduction in this proposal of learning methods that combine energy with
additional features in order to rank clusters of conformations at the refinement stage and improve final solutions.
The proposal has two distinct thrusts: optimization and learning. On the optimization front, the project team
in its past research has defined the docking problem as an optimization on manifolds. In this project, two novel
elements in the manifold optimization formulation are introduced that are expected to lead to significant
improvements in the performance of docking algorithms. On the learning front, using novel robust optimization
techniques, a new and more rigorous approach to robust regression, classification, and outlier detection, is
introduced in order to (i) obtain improved ranking of clusters in the refinement stage, and (ii) address the
important problem of distinguishing between binders and non-binders.
The project aims to improve the performance of computational docking used to predict whether, and if so
how, proteins interact with each other and with small molecules. Understanding and predicting protein-protein
and protein-small molecule interactions is an important component of the process of rational drug design. More
effective protein docking algorithms, therefore, is expected to lead to improving the rational drug design process.
蛋白质对接定义为预测基于对接配合物的三维结构
了解组件的结构。用于此目的的实验技术通常很昂贵,
耗时,在某些情况下是不可行的;因此,需要计算对接方法。这
寻找对接构象的问题通常被认为是基于能量的评分的最小化
功能。此功能由多种能量术语组成,这些术语以不同的空间尺度起作用并证明
多频行为导致了大量局部最小值。此外,
对接/结合涉及对组分分子的构象变化,导致高度复杂的搜索
优化问题的空间。这些功能使优化问题极为困难。
大多数最先进的对接协议采用多阶段和多尺度方法。他们以一个
使用简化的评分功能对构象空间进行全球搜索,以识别
空间,然后使用更详细和完整的评分功能进行本地优化,以消除冲突。在
最后两个阶段中发现的最终所谓改进阶段,使用A进一步探讨了
中等空间尺度搜索以提供一组最终解决方案。最近,由于
评分函数/能量电位的不准确性,上面概述的优化阶段总是会产生
在最后阶段的假阳性数量,即得分较低但远离本地的构象
构象。这激发了这种将能量与能量与
其他功能,以便在改进阶段对构象的簇进行排名并改善最终解决方案。
该提案有两个不同的推力:优化和学习。在优化方面,项目团队
在过去的研究中,将停靠问题定义为对流形的优化。在这个项目中,两本小说
引入了歧管优化公式中的元素,这些元素有望导致重要
对接算法的性能的改进。在学习方面,使用新颖的强大优化
技术是一种新的,更严格的方法来鲁棒回归,分类和异常检测,是
引入(i)在改进阶段获得簇的排名改进,(ii)解决
区分粘合剂和非绑定器的重要问题。
该项目旨在提高用于预测是否以及是否这样的计算对接的性能
蛋白质如何相互相互作用,并与小分子相互作用。理解和预测蛋白质蛋白
蛋白质 - 小分子相互作用是理性药物设计过程的重要组成部分。更多的
因此,有效蛋白质对接算法有望导致改善合理的药物设计过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pirooz Vakili其他文献
Pirooz Vakili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pirooz Vakili', 18)}}的其他基金
Optimizing and Learning Strategies for Protein Docking
蛋白质对接的优化和学习策略
- 批准号:
10021016 - 财政年份:2019
- 资助金额:
$ 19.71万 - 项目类别:
Optimizing and Learning Strategies for Protein Docking
蛋白质对接的优化和学习策略
- 批准号:
10242031 - 财政年份:2019
- 资助金额:
$ 19.71万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 19.71万 - 项目类别: