MRI-compatible and integrated devices for simultaneous neural recording, stimulation, imaging
与 MRI 兼容的集成设备,用于同步神经记录、刺激、成像
基本信息
- 批准号:9465986
- 负责人:
- 金额:$ 22.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAnesthesia proceduresAnimalsBasic ScienceBiomedical ResearchBrainBrain DiseasesBrain scanBusinessesClinicalClinical TreatmentDevice SafetyDevicesDiagnosisDiseaseElectrocorticogramElectroencephalogramElectroencephalographyElectromagneticsElectronicsElectrophysiology (science)EnvironmentEpilepsyEventFoundationsFunctional Magnetic Resonance ImagingHarvestHeartHumanImageImaging technologyIndianaKnowledgeLinkMRI ScansMagnetic Resonance ImagingManufacturer NameMental DepressionMicroelectrodesMorphologic artifactsNamesNeuronsNeurosciencesNeurosciences ResearchNoiseOrganOutcomeParkinson DiseasePatientsPatternPhasePreventionProductionRF coilRattusResearchResolutionSafetySignal TransductionSpecificityStomachSystemTechnical ExpertiseTechniquesTechnologyTestingUniversitiesWireless Technologybasebrain researchclinical Diagnosisclinical practicecommercializationcostdensitydesignexperimental studyhemodynamicsimprovedin vivointerestminiaturizemultimodalitynanofabricationneural stimulationneuroregulationneurotransmissionnovelprototyperelating to nervous systemscale upsignal processingspatiotemporaltranslational neuroscience
项目摘要
Project Summary
The use of technologies for imaging, recording and modulating brain activity is rapidly advancing neuroscience.
Notably, microelectrodes are used to locally record neural activity or to perturb circuit function. Functional
magnetic resonance imaging (fMRI) is widely used to image large-scale patterns of hemodynamic fluctuations
accompanying neural activity. Although these techniques have become the workhorse of basic and
translational neuroscience, they are mainly employed separately and provide only partial views of brain
functions with massively different spatiotemporal resolution and specificity. At present, there is no established
way to combine these multimodal and multiscale techniques into a fully integrated system that would allow us
to link local neuronal events or modulations to large-scale network activities. The absence of such a system
will continue to present significant barriers that impede bridging brain activity across spatial and temporal
scales. There is a critical need to develop a novel system that will enable and integrate simultaneous neural
imaging, recording and modulation at local and global scales for a variety of neuroscience applications. To
meet this critical need, MR-Link LLC, and its partners at Purdue University, propose to develop, test and
commercialize a unique (Purdue IP: 67628 & 67330) integrated system for concurrent fMRI, electrical
recording and stimulation. Central to this system is a novel microelectronic device, which will be miniaturized,
battery-free, and wireless, to enable high-density neural recording and modulation during high-throughput brain
scans. It will also eliminate the effects of electromagnetic interference, utilize existing hardware in the MRI
system for multimodal capabilities, enable synchronized and concurrent neural recording, stimulation and
imaging, and reduce the size and cost of MRI-compatible neural recording or stimulation systems. Thus, the
device is well suited for wide commercialization to accelerate neuroscience research in basic and clinical
settings. Phase I Specific Aims: 1) Develop the MR-Link devices for neural recording and stimulation, and 2)
Test the MR-Link devices with in vivo experiments on rats in 7-T MRI. At the conclusion of Phase I, MR-Link
and its research partners at Purdue will have designed and fabricated the device, and also tested the feasibility,
efficacy, and safety of using the “MR-Link” for simultaneous in vivo recording, stimulation, and imaging of the
rat brain. Phase I will lay the technical foundation for Phase II, in which MR-Link will continue to refine the
design for recording and stimulating the human brain, scale up to 256 or 512 recording/stimulation channels,
miniaturize the device through nanofabrication, prepare and start mass production for wide dissemination, and
partner with major MRI manufacturers to integrate MR-Link devices with all research and clinical MRI systems.
MR-Link will supply more affordable, accessible, reliable, and powerful solutions for simultaneous neural
imaging, recording, and stimulation in animals and humans, creating a new window of opportunity to transform
basic neuroscience research and advance clinical diagnosis and treatment of brain disorders.
项目摘要
将技术用于成像,记录和调节大脑活动正在迅速发展神经科学。
值得注意的是,微电极用于局部记录神经元活动或扰动电路功能。功能
磁共振成像(fMRI)广泛用于成像大规模的血流动力波动模式
参加神经活动。尽管这些技术已成为基本和
转化神经科学,它们主要是单独使用的,只提供大脑的部分视图
具有截然不同的时空分辨率和特异性的功能。目前,还没有建立
将这些多模式和多尺度技术结合到完全集成的系统中的方法,这将使我们
将本地神经元事件或调制链接到大规模网络活动。缺乏这样的系统
将继续呈现出严重的障碍,这些障碍会阻碍跨空间和临时性的大脑活动
秤。迫切需要开发一种新型系统,该系统将启用和整合中立
各种神经科学应用的局部和全球尺度上的成像,记录和调制。到
满足这一关键需求,MR-Link LLC及其在普渡大学的合作伙伴,提议开发,测试和
商业化独特的(普渡大学IP:67628&67330),用于并发fMRI,电动系统
记录和刺激。该系统的核心是一种新型的微电子设备,它将被微型化,
无电池和无线,以在高通量大脑期间启用高密度的神经元记录和调节
扫描。它还将消除电磁干扰的影响,利用MRI中的现有硬件
多模式功能的系统,启用同步和并发的神经记录,刺激和
成像,并降低与MRI兼容的神经记录或刺激系统的大小和成本。那,
设备非常适合广泛的商业化,以加速基本和临床的神经科学研究
设置。第一阶段的特定目的:1)开发用于神经记录和刺激的MR链接设备,以及2)
通过在7-T MRI中的大鼠进行体内实验测试MR-Link设备。在第一阶段结束时,MR-Link
它在普渡大学的研究伙伴将设计和制造设备,还测试了可行性,
使用“ MR-Link”进行简单的体内记录,刺激和成像的功效和安全性
大鼠大脑。第一阶段将奠定第二阶段的技术基础,其中MR-Link将继续完善
用于记录和刺激人脑的设计,最大规模256或512记录/刺激通道,
通过纳米化来使设备微型化,准备和开始大规模生产以进行广泛的传播,以及
与主要MRI制造商合作,将MR-Link设备与所有研究和临床MRI系统集成在一起。
MR-Link将为简单神经提供更实惠,可访问,可靠和强大的解决方案
动物和人类的成像,记录和刺激,创造了一个新的机会窗口来转变
基本的神经科学研究和进步临床诊断和脑部疾病的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pedro Irazoqui其他文献
Pedro Irazoqui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pedro Irazoqui', 18)}}的其他基金
Sequence of physiological events during oxygen conserving reflex activation leading to sudden death in epilepsy
节氧反射激活期间导致癫痫猝死的生理事件序列
- 批准号:
10097583 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Sequence of physiological events during oxygen conserving reflex activation leading to sudden death in epilepsy
节氧反射激活期间导致癫痫猝死的生理事件序列
- 批准号:
10931220 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Sequence of physiological events during oxygen conserving reflex activation leading to sudden death in epilepsy
节氧反射激活期间导致癫痫猝死的生理事件序列
- 批准号:
10310425 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Sequence of physiological events during oxygen conserving reflex activation leading to sudden death in epilepsy
节氧反射激活期间导致癫痫猝死的生理事件序列
- 批准号:
10622708 - 财政年份:2020
- 资助金额:
$ 22.83万 - 项目类别:
Long-term In Vivo Monitoring of Neuromuscular Performance in Mice
小鼠神经肌肉性能的长期体内监测
- 批准号:
8627916 - 财政年份:2013
- 资助金额:
$ 22.83万 - 项目类别:
Long-term In Vivo Monitoring of Neuromuscular Performance in Mice
小鼠神经肌肉性能的长期体内监测
- 批准号:
8719823 - 财政年份:2013
- 资助金额:
$ 22.83万 - 项目类别:
A Multidisciplinary and Needs-Driven Approach to Translational Team-Based Biomedi
基于团队的生物医学转化的多学科和需求驱动方法
- 批准号:
8260337 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
A Multidisciplinary and Needs-Driven Approach to Translational Team-Based Biomedi
基于团队的生物医学转化的多学科和需求驱动方法
- 批准号:
8075346 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
A Multidisciplinary and Needs-Driven Approach to Translational Team-Based Biomedi
基于团队的生物医学转化的多学科和需求驱动方法
- 批准号:
8667437 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
A Multidisciplinary and Needs-Driven Approach to Translational Team-Based Biomedi
基于团队的生物医学转化的多学科和需求驱动方法
- 批准号:
8474752 - 财政年份:2011
- 资助金额:
$ 22.83万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Real-time Prediction of Adverse Outcomes After Surgery
实时预测手术后不良后果
- 批准号:
10724048 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
Wearable Wireless Respiratory Monitoring System that Detects and Predicts Opioid Induced Respiratory Depression
可穿戴无线呼吸监测系统,可检测和预测阿片类药物引起的呼吸抑制
- 批准号:
10784983 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
A multi-sensor catheter for diagnosing obstructive sleep apnea
用于诊断阻塞性睡眠呼吸暂停的多传感器导管
- 批准号:
10696658 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
Non-invasive measurements of central blood pressures by RF sensors
通过射频传感器无创测量中心血压
- 批准号:
10649077 - 财政年份:2023
- 资助金额:
$ 22.83万 - 项目类别:
A ROBOT-ASSISTED PERFUSION SYSTEM TO IMPROVE PATIENT SAFETY IN THE CARDIAC OPERATING ROOM
机器人辅助灌注系统可提高心脏手术室患者的安全
- 批准号:
10442068 - 财政年份:2022
- 资助金额:
$ 22.83万 - 项目类别: