Dynamics of Gene Drives in Natural Populations
自然种群中基因驱动的动态
基本信息
- 批准号:9898258
- 负责人:
- 金额:$ 6.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAffectAllelesAnimal ModelAnopheles GenusArthropodsAutomobile DrivingCRISPR/Cas technologyChromosomesCleaved cellContainmentCulicidaeDataDemographyDengueDevelopmentDisadvantagedDiseaseDrosophila genusDrosophila melanogasterEngineeringEnvironmentExtinction (Psychology)FemaleFrequenciesFutureGene FrequencyGenerationsGenesGeneticGenetic EngineeringGenetic VariationGeographyGoalsHeterozygoteHomingHomozygoteIndividualInsectaInvadedLaboratoriesLarvaLinkMalariaMapsMeasuresModelingMonitorMosquito-borne infectious diseaseMovementNonhomologous DNA End JoiningPerformancePhenotypePlayPopulationPopulation GeneticsPopulation HeterogeneityProtocols documentationResistanceRoleSafetySavingsSisterSiteStructureSystemTarget PopulationsTechniquesTestingVariantVector-transmitted infectious diseaseWorkZIKAalpha Toxinantitoxinbasecostdesigneggexperimental studyfitnessflygene drive allelegene drive systemgenetic variantgenomic locushoming gene drivemedea gene drivemigrationnext generationpathogenpreventrepairedresistance allelesample fixationsimulationtransgenic insectvector
项目摘要
Project Summary/Abstract
Mosquito-transmitted diseases, including malaria, dengue and Zika, continue to take a devastating toll. Gene
drive systems could provide a new strategy for controlling these diseases by spreading genetically engineered
alleles into vector populations, such as allelic variants that make the insects resistant to a pathogen or
deleterious alleles than directly suppress their populations.
The recently developed CRISPR/Cas9 homing gene drive system promises to be a highly adaptable
mechanism that works by converting heterozygotes for the driver construct into homozygotes. However, it
remains unclear whether this mechanism will work in wild populations given the expected high rate of
generation of resistance alleles, which are created by the drive mechanism itself when cleavage is repaired by
nonhomologous end joining. Another proposed gene drive system, Medea, likely suffers less from the
generation of resistance alleles, but it spreads more slowly and is highly sensitive to fitness costs. The goal of
our project is to identify and quantify parameters that are critical to determining whether these systems can in
fact spread in diverse, natural populations.
In our first aim, we will employ laboratory examples of homing drivers and Medea drivers to quantify the drive
efficiency and origination rate of resistance alleles in genetically diverse but well characterized lines of the
model organism Drosophila melanogaster. We will then use these results to map the genetic loci associated
with differences in drive efficiency and resistance levels.
Our second aim will determine the ability of each gene drive system to invade genetically diverse populations.
For this purpose, a small number of gene drive flies will be introduced into population cages with a mix of
Global Diversity Line flies. Phenotype frequencies will be tracked over several generations to determine the
ability of the gene drive to successfully invade the population. This work will be done in a state-of-the-art
arthropod containment lab to prevent escape of transgenic insects.
In our third aim, we will compare the ability of homing drivers and Medea drivers to spread in geographically
structured populations using sophisticated population genetic simulations. We will identify the parameters that
will allow a gene drive system to establish, spread, and either fix or persist sufficiently long in a large natural
population under realistic assumptions of demography and population structure.
Overall our experiments and modeling will provide crucial data for predicting the dynamics of gene drive
systems in natural target populations. The conclusions from our studies will play an important role in designing
and implementing the next generation of gene drive systems for optimal performance in realistic populations.
项目摘要/摘要
包括疟疾,登革热和Zika在内的蚊子传播疾病继续造成毁灭性损失。基因
驱动系统可以通过传播基因工程来提供一种新的策略来控制这些疾病
等位基因到矢量种群中,例如使昆虫抗病机构或
有害等位基因比直接抑制其人群。
最近开发的CRISPR/CAS9归巢基因驱动系统有望成为高度适应的
通过将驱动器构造的杂合子转换为纯合子来起作用的机制。但是,它
尚不清楚这种机制是否在野生种群中有效,鉴于预期的高率
产生电阻等位基因,这是由驱动机构本身创造的
非同源结局加入。另一个提出的基因驱动系统MEDEA可能少于
产生的阻力等位基因,但扩散得更慢,并且对健身成本高度敏感。目标
我们的项目是识别和量化参数,这些参数对于确定这些系统是否可以在
事实传播到多样化的自然人群中。
在我们的第一个目标中,我们将采用实验室示例的归宿司机和美狄亚司机来量化驱动器
遗传多样性但特征良好的线条的效率和抗性等位基因的起源速率
模型有机体果蝇Melanogaster。然后,我们将使用这些结果来映射遗传基因座相关
驱动效率和电阻水平的差异。
我们的第二个目标将决定每个基因驱动系统入侵遗传多样的人群的能力。
为此,将少量的基因驱动蝇引入人口笼中
全球多样性线苍蝇。表型频率将在几代人中进行跟踪以确定
基因驱动成功入侵人群的能力。这项工作将在最先进的
节肢动物遏制实验室,以防止转基因昆虫逃脱。
在我们的第三个目标中,我们将比较归宿司机和美狄亚司机在地理上传播的能力
使用复杂的种群基因模拟的结构化种群。我们将确定参数
将允许基因驱动系统建立,传播并固定或持续到足够长的大天然
人口统计学和人口结构的现实假设下的人口。
总体而言,我们的实验和建模将提供至关重要的数据来预测基因驱动的动力学
自然目标人群中的系统。我们研究的结论将在设计中发挥重要作用
并实施下一代基因驱动系统,以在现实种群中进行最佳性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JACKSON CHAMPER其他文献
JACKSON CHAMPER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 6.93万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 6.93万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 6.93万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 6.93万 - 项目类别:
Iron deficits and their relationship with symptoms and cognition in Psychotic Spectrum Disorders
铁缺乏及其与精神病谱系障碍症状和认知的关系
- 批准号:
10595270 - 财政年份:2023
- 资助金额:
$ 6.93万 - 项目类别: