Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
基本信息
- 批准号:9769071
- 负责人:
- 金额:$ 9.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2019-11-03
- 项目状态:已结题
- 来源:
- 关键词:ActivinsAffectAnimal CapAnteriorBioinformaticsBirthBlastodermCandidate Disease GeneCell PolarityCell physiologyCellsCessation of lifeCharacteristicsComplexCongenital AbnormalityCuesDataDefectDevelopmentDevelopmental BiologyDimensionsDorsalDrosophila genusEctodermEmbryoEmbryologyEmbryonic DevelopmentEndodermExhibitsExposure toExpression ProfilingFailureFetusGene ExpressionGeneticGerm LayersHeadHealthHumanIndividualInstructionLeadLigandsMesodermMesoderm CellModelingMolecularMorphogenesisMovementNeural Tube ClosureNeural Tube DefectsNeural tubeNeuroectodermNodalParaxial MesodermPatternPhasePlayPopulationPositioning AttributeProcessProteinsRoleSignal TransductionSocietiesSpecific qualifier valueSpinal DysraphismTailTestingTissuesTransplantationVertebratesWorkXenopusZebrafishcell behaviorcell fate specificationdifferential expressiondisabilitygain of functiongastrulationintercalationmigrationmorphogensmutantnotochordplanar cell polaritypolarized celltranscriptome sequencingvertebrate embryos
项目摘要
Project Summary
Extension of the anterior-posterior (head to tail) body axis is critical to development of a healthy fetus. Defects
in this process can result in abnormally short embryos, and more importantly, neural tube closure defects
(NTDs). NTDs affect approximately 1 in 1,000 human births, making them one of the most common classes of
congenital birth defects. Despite the significant burden to individuals and society the underlying genetic causes
remain still poorly understood. Therefor, defining the mechanisms of axis extension contributes significantly to
the fundamental study of developmental biology and has important implications in human health. Anterior-
posterior (AP) axis extension occurs via a highly conserved morphogenetic mechanism called convergence
and extension (C&E), which employs polarized cell behaviors such as directed migration and ML cell
intercalation to drive mediolateral (ML) narrowing of the body accompanied by elongation in the AP dimension.
In vertebrate embryos, this occurs during gastrulation, the early embryonic process during which the three
primordial germ layers are established and then shaped into a rudimentary body plan. Patterning of the AP
axis is also required, and in some cases sufficient, for C&E to occur. AP positional identity of a tissue is
established during embryonic axis patterning prior to the onset of gastrulation, but how this is communicated to
the morphogenetic machinery that drives C&E is not understood. This coordination of tissue patterning with
morphogenesis remains one of the most fundamental questions in developmental biology.
The morphogen Nodal likely occupies a vital position at the interface of tissue patterning and
morphogenesis. In vertebrate embryos, graded Nodal signaling is essential for induction of endoderm and
mesoderm and AP patterning, with higher Nodal levels specifying more dorsal/anterior cells fates. Loss of
Nodal signaling in zebrafish embryos results in severely reduced axial extension and an open neural tube, but
also nearly complete mesoderm deficiency, making it unclear whether extension defects in the neuroectoderm
are due directly to the loss of Nodal signaling or indirectly to the loss of mesoderm. Experimental evidence
suggests an instructive yet indirect role of Nodal signaling during C&E of mesodermal tissues, but the way(s)
by which Nodal signaling regulates C&E is unknown. Here, I propose to test the hypothesis that Nodal
signaling regulates C&E gastrulation movements indirectly via its role in mesoderm specification and
patterning, and aim to define the tissue, cellular, and molecular mechanisms by which Nodal signaling provides
instructive cues for axis extension. Characterization of Nodal's role in this process will significantly increase our
understanding of how tissue patterning is coordinated with morphogenesis in vertebrate embryos and can help
to identify the underlying causes of NTDs.
项目概要
前后(头到尾)身体轴的延伸对于健康胎儿的发育至关重要。缺陷
在这个过程中会导致异常短的胚胎,更重要的是,神经管闭合缺陷
(被忽视的热带病)。 NTD 影响大约千分之一的人类出生,使其成为最常见的类别之一
先天性出生缺陷。尽管对个人和社会造成重大负担,但潜在的遗传原因
仍然知之甚少。因此,定义轴延伸的机制对
发育生物学的基础研究,对人类健康具有重要影响。前-
后轴 (AP) 延伸通过高度保守的形态发生机制(称为收敛)发生
和延伸 (C&E),它采用极化细胞行为,例如定向迁移和 ML 细胞
插层驱动身体的内侧(ML)变窄,同时伴随着 AP 维度的伸长。
在脊椎动物胚胎中,这种情况发生在原肠胚形成期间,即早期胚胎过程,在此期间,三个
原始胚层建立,然后形成基本的身体结构。 AP 的图案化
轴对于收容和教育的发生也是必需的,并且在某些情况下就足够了。组织的 AP 位置标识是
在原肠胚形成之前的胚胎轴模式中建立,但是这是如何传达给
驱动 C&E 的形态发生机制尚不清楚。这种组织图案的协调
形态发生仍然是发育生物学中最基本的问题之一。
形态发生素 Nodal 可能在组织图案化和组织形态形成的界面上占据重要位置。
形态发生。在脊椎动物胚胎中,分级节点信号对于内胚层和内胚层的诱导至关重要。
中胚层和 AP 模式,较高的节点水平指定更多的背侧/前部细胞命运。损失
斑马鱼胚胎中的节点信号传导导致轴向延伸严重减少和神经管开放,但是
中胚层几乎完全缺乏,因此尚不清楚神经外胚层是否存在延伸缺陷
直接归因于节点信号传导的丧失或间接归因于中胚层的丧失。实验证据
表明 Nodal 信号在中胚层组织的 C&E 过程中具有指导性但间接的作用,但方式
Nodal 信号传导通过何种方式调节 C&E 尚不清楚。在这里,我建议检验以下假设:Nodal
信号传导通过其在中胚层规范中的作用间接调节 C&E 原肠胚形成运动
模式,旨在定义节点信号提供的组织、细胞和分子机制
轴延伸的指导性线索。描述节点在此过程中的作用将显着提高我们的
了解脊椎动物胚胎中组织模式如何与形态发生相协调,可以帮助
确定 NTD 的根本原因。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margot L.K. Williams其他文献
Margot L.K. Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margot L.K. Williams', 18)}}的其他基金
Molecular drivers of tissue-specific morphogenetic programs
组织特异性形态发生程序的分子驱动因素
- 批准号:
10440153 - 财政年份:2022
- 资助金额:
$ 9.87万 - 项目类别:
Molecular drivers of tissue-specific morphogenetic programs
组织特异性形态发生程序的分子驱动因素
- 批准号:
10650730 - 财政年份:2022
- 资助金额:
$ 9.87万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10057264 - 财政年份:2018
- 资助金额:
$ 9.87万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10292449 - 财政年份:2018
- 资助金额:
$ 9.87万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10038928 - 财政年份:2018
- 资助金额:
$ 9.87万 - 项目类别:
Regulation of mediolateral cell polarity by PCP and notochord boundary signaling
PCP 和脊索边界信号传导调节内侧细胞极性
- 批准号:
9055556 - 财政年份:2015
- 资助金额:
$ 9.87万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10057264 - 财政年份:2018
- 资助金额:
$ 9.87万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10292449 - 财政年份:2018
- 资助金额:
$ 9.87万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10038928 - 财政年份:2018
- 资助金额:
$ 9.87万 - 项目类别:
Regulation of TGF-beta Signaling and Embryonic Development by GTPases
GTPases 对 TGF-β 信号传导和胚胎发育的调节
- 批准号:
7817175 - 财政年份:2007
- 资助金额:
$ 9.87万 - 项目类别: