Molecular drivers of tissue-specific morphogenetic programs
组织特异性形态发生程序的分子驱动因素
基本信息
- 批准号:10650730
- 负责人:
- 金额:$ 44.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-22 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAmericanAnimalsAutomobile DrivingBrainCause of DeathCellsChildCongenital AbnormalityCoupledDefectDevelopmentDevelopmental ProcessDiagnosisEmbryoEmbryonic DevelopmentEphrinsExhibitsExtracellular MatrixFailureFamilyFutureGene ExpressionGene Expression ProfileGenesGerm LayersHeadHeartIndividualInstructionIntuitionLigandsLinkMesodermMethodsModelingMolecularMorphogenesisMovementNeural FoldNeural Tube ClosureNeural Tube DefectsNeural Tube DevelopmentNeural tubeNeuroectodermNodalOrganPatternPrevention strategyProceduresProcessReportingRodRoleShapesSignal TransductionSignaling MoleculeSpecific qualifier valueSpinal CordTailTestingTissue-Specific Gene ExpressionTissuesTubeVariantZebrafishcell behaviorcell motilitycell typeembryo cellembryo tissueexperimental studygastrulationgenetic manipulationgenetic risk factorimprovedin vivoinnovationmorphogensneuralnotochordnoveloptogeneticspharmacologicprogramsprospectivereceptorresponsetranscriptomic profilingtreatment strategyvertebrate embryos
项目摘要
Project summary
Congenital malformations, or birth defects, are the leading cause of death of American children under the age
of nine. Neural tube defects (NTDs) are among the most common and devastating congenital malformations,
and result from a failure of the neural tube to close during early embryonic development. Neural tube closure
requires not only that the paired neural folds raise and fuse together, but also that the neuroectoderm
(precursor to the neural tube), narrows sufficiently for the neural folds to meet along the midline. This critical
narrowing begins during gastrulation and is coupled to a concurrent anteroposterior (AP) extension of the
neuroectoderm that results from the polarized rearrangement of cells into a longer and narrower array. This
process, appropriately termed convergence & extension (C&E), is a highly conserved morphogenetic
mechanism with essential roles in shaping numerous embryonic tissues and establishing the animal body plan.
Neural tube closure and extension of the primary AP embryonic axis are driven by C&E of both the
neuroectoderm and the underlying mesoderm, each of which exhibits a distinct suite of cell behaviors and
contributes actively to axis extension. It remains poorly understood, however, how tissue identity is coordinated
with tissue-specific cell behavior programs.
Here, we address the tissue-specific morphogenesis underlying axis extension in zebrafish, a model
vertebrate embryo. We recently reported that the TGF- family morphogen Nodal is not only necessary for
C&E gastrulation movements in zebrafish, but also sufficient to promote these cell behaviors in otherwise
naïve zebrafish embryonic explants. By varying the method of Nodal signaling activation, we can drive tissue-
specific C&E of either the neuroectoderm or mesoderm within these explants. Importantly, this allows us to
uncouple morphogenesis of individual tissue layers and distinguish the mechanisms that control cell identity
from those that control cell movement. Each mode of C&E is associated with a specific developmental peak of
Nodal activity and transcriptional profile, leading us to hypothesize that temporal patterns of Nodal activity
define tissue-specific morphogenesis via distinct downstream molecular programs. Using cutting-edge
optogenetic approaches to precisely manipulate Nodal activity, experiments proposed in Aim 1 will test how
variations in temporal signaling dynamics control tissue-specific C&E both in and ex vivo. In Aims 2 and 3, we
will define the specific components of each Nodal-dependent gene expression program that are necessary
and/or sufficient for tissue-specific C&E of the mesoderm and neuroectoderm, respectively. This proposal
leverages the unique advantages of our innovative explant model and optogenetic approaches to identify
genes with novel roles in axis extension, thereby advancing a fundamental understanding of neural tube
closure essential for improved diagnosis, prevention, and treatment strategies for NTDs.
项目概要
先天畸形或出生缺陷是美国 1 岁以下儿童死亡的主要原因
神经管缺陷(NTD)是最常见和最具破坏性的先天畸形之一,
是由于早期胚胎发育过程中神经管未能闭合造成的。
不仅需要成对的神经褶皱升起并融合在一起,而且还需要神经外胚层
(神经管的前体),充分变窄,使神经皱襞沿着中线相遇。
狭窄在原肠胚形成期间开始,并与同时发生的前后(AP)延伸相结合
神经外胚层是由细胞极化重排成更长更窄的阵列而产生的。
过程,适当地称为收敛和扩展(C&E),是一个高度保守的形态发生
在塑造众多胚胎组织和建立动物身体计划方面发挥重要作用的机制。
神经管闭合和初级 AP 胚胎轴的延伸是由两个神经管的 C&E 驱动的
神经外胚层和下面的中胚层,每一个都表现出一套独特的细胞行为
然而,人们对组织特性如何协调仍知之甚少。
具有组织特异性细胞行为程序。
在这里,我们解决了斑马鱼模型中轴延伸的组织特异性形态发生
我们最近报道 TGF-β 家族形态发生素 Nodal 不仅是脊椎动物胚胎所必需的。
斑马鱼的 C&E 原肠胚形成运动,但也足以促进其他细胞的这些行为
幼稚的斑马鱼胚胎外植体通过改变节点信号激活的方法,我们可以驱动组织-
重要的是,这使我们能够对这些外植体中的神经外胚层或中胚层进行特异性 C&E。
解开各个组织层的形态发生并区分控制细胞身份的机制
每种 C&E 模式都与特定的发育高峰相关。
节点活动和转录谱,引导我们捕获节点活动的时间模式
通过不同的下游分子程序定义组织特异性形态发生。
目标 1 中提出的实验将测试如何通过光遗传学方法精确操纵节点活动
在目标 2 和 3 中,时间信号动力学的变化控制体内和体外的组织特异性 C&E。
将定义每个节点依赖性基因表达程序所需的特定组件
和/或分别足以用于中胚层和神经外胚层的组织特异性 C&E。
利用我们创新的外植体模型和光遗传学方法的独特优势来识别
在轴延伸中具有新作用的基因,从而增进对神经管的基本理解
关闭对于改进 NTD 的诊断、预防和治疗策略至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Margot L.K. Williams其他文献
Margot L.K. Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Margot L.K. Williams', 18)}}的其他基金
Molecular drivers of tissue-specific morphogenetic programs
组织特异性形态发生程序的分子驱动因素
- 批准号:
10440153 - 财政年份:2022
- 资助金额:
$ 44.35万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10057264 - 财政年份:2018
- 资助金额:
$ 44.35万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10292449 - 财政年份:2018
- 资助金额:
$ 44.35万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
9769071 - 财政年份:2018
- 资助金额:
$ 44.35万 - 项目类别:
Defining Direct and Indirect Roles of Nodal Signaling in Convergence & Extension
定义节点信令在收敛中的直接和间接作用
- 批准号:
10038928 - 财政年份:2018
- 资助金额:
$ 44.35万 - 项目类别:
Regulation of mediolateral cell polarity by PCP and notochord boundary signaling
PCP 和脊索边界信号传导调节内侧细胞极性
- 批准号:
9055556 - 财政年份:2015
- 资助金额:
$ 44.35万 - 项目类别:
相似国自然基金
HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
- 批准号:82301231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
- 批准号:52375281
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
- 批准号:82301213
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
- 批准号:82301214
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Identification of Prospective Predictors of Alcohol Initiation During Early Adolescence
青春期早期饮酒的前瞻性预测因素的鉴定
- 批准号:
10823917 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 44.35万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 44.35万 - 项目类别: