Rational design and functionalization of circular tandem repeat proteins
环状串联重复蛋白的合理设计和功能化
基本信息
- 批准号:9897572
- 负责人:
- 金额:$ 34.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:Adaptor Signaling ProteinAlgorithm DesignAlgorithmsArchitectureAvidityBindingBiochemicalBiological ProcessBiophysicsCaliberCell TherapyCell surfaceCellsCellular AssayClinicalCollaborationsCommunitiesComplexComputational algorithmComputing MethodologiesDevelopmentDiagnostic ReagentDimensionsElementsEvolutionExtracellular DomainFamilyGene ProteinsGeometryGoalsHandednessHematopoietic stem cellsHomoIL3 GeneInterleukin-2LengthLocationMethodsMolecularMolecular ConformationMutationNatureOrganismOutputPeptidesPropertyProtein ArrayProtein EngineeringProtein RegionProteinsReagentRecording of previous eventsReportingResearchSamplingScaffolding ProteinSideSignal TransductionSiteSourceSpecificitySpeedStructureSurfaceSystemT-LymphocyteTandem Repeat SequencesTertiary Protein StructureTestingTherapeuticValidationWorkcellular developmentcytokinedesigndesign and constructiongene synthesisimprovedmembernovelnovel strategiesprotein expressionprotein foldingrational functionscaffoldsrc Homology Region 2 Domaintool
项目摘要
PROJECT SUMMARY/ABSTRACT
Natural evolution has produced a stunningly diverse array of proteins that perform an equally diverse set of
molecular functions in living organisms. These proteins—which constitute the primary raw material from which
we might seek to develop new protein reagents—have been honed over the course of their mutational history
to meet specific functional challenges. As a result, turning them to new functions by rational means often
proves problematic: their expression and/or stability are compromised by our reengineering attempts, and their
relic functionality is at odds with our intended use. De novo protein design, which uses sophisticated computer
algorithms to identify stable sequence:structure pairings without relying on native templates, can create protein
folds never before seen in Nature, and thus offers an alternative source of protein scaffolds for functionalization.
We recently reported the development of new algorithms for de novo design of a particular class of proteins—
circular tandem repeat proteins or cTRPs—whose modular, self-reinforcing symmetrical architecture offers
advantages that include high stability, tunable geometry, and switchable oligomeric state. We hypothesize that
de novo designed proteins in general, and these designed cTRPs in particular, will prove to be a valuable
source of protein scaffolds for downstream application. Our aims in this proposal are first, to further develop
our algorithms in order to design and experimentally validate a diverse set of cTRP scaffolds of varied size and
topology; and second, in collaboration with clinical colleagues here at the Hutchinson Center, to evaluate these
designs as scaffolds for presentation of functional domains with precisely controlled symmetry and geometry.
Our collaborators will test these designed constructs in cellular assays with the goal of speeding the
development of cellular therapies. Successful completion of this research will lead to (1) improved protein
design algorithms that have been rigorously validated across a range of topologies and are available to the
research community; (2) a family of stable and robust protein scaffolds for downstream functionalization, all of
whose members have been structurally and biophysically characterized; (3) a set of useful protein reagents for
biomedical applications.
项目摘要/摘要
自然进化产生了令人惊叹的各种蛋白质,它们执行了同样多样的蛋白质
生物中的分子功能。这些蛋白质 - 构成主要原材料
我们可能会寻求开发新的蛋白质试剂 - 在其突变史的过程中受到尊重
应对特定的功能挑战。结果,经常通过理性手段将它们转向新功能
证明有问题的是:我们的表达和/或稳定性因我们的重新设计尝试而损害了
遗物功能与我们的预期用途不符。从头蛋白质设计,使用复杂的计算机
识别稳定序列的算法:结构配对而不依赖天然模板,可以创建蛋白质
褶皱在自然界中从未见过,因此提供了用于功能化的蛋白质支架的替代来源。
我们最近报道了开发针对特定类别蛋白质的从头设计的新算法 -
圆形串联重复蛋白或CTRP-其模块化,自我强化对称体系结构提供
包括高稳定性,可调几何形状和可切换寡聚状态的优点。我们假设这一点
从头设计的蛋白质一般设计,尤其是这些蛋白质,这些蛋白质将被证明是有价值的
用于下游应用的蛋白质支架的来源。我们在该提案中的目标是进一步发展
我们的算法是为了设计和实验验证各种大小的CTRP支架和
拓扑;其次,在哈钦森中心与临床同事合作以评估这些
设计作为脚手架,以呈现具有精确控制的对称性和几何形状的功能域。
我们的合作者将测试这些在蜂窝测定中的设计结构,目的是加速
细胞疗法的发展。成功完成这项研究将导致(1)改善蛋白质
设计算法已在一系列拓扑中进行了严格验证,可用于
研究社区; (2)一个稳定且健壮的蛋白质支架的家族,用于下游功能,所有
其成员在结构和生物物理上的表征; (3)一组有用的蛋白质试剂
生物医学应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philip Bradley其他文献
Philip Bradley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philip Bradley', 18)}}的其他基金
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10433774 - 财政年份:2022
- 资助金额:
$ 34.54万 - 项目类别:
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10569090 - 财政年份:2022
- 资助金额:
$ 34.54万 - 项目类别:
Integrating T cell receptor features with gene expression profiles to define T cell specificity and differentiation
将 T 细胞受体特征与基因表达谱整合以定义 T 细胞特异性和分化
- 批准号:
10593429 - 财政年份:2022
- 资助金额:
$ 34.54万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10191763 - 财政年份:2021
- 资助金额:
$ 34.54万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10707065 - 财政年份:2021
- 资助金额:
$ 34.54万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10631595 - 财政年份:2021
- 资助金额:
$ 34.54万 - 项目类别:
Molecular modeling and machine learning for protein structures and interactions
蛋白质结构和相互作用的分子建模和机器学习
- 批准号:
10406274 - 财政年份:2021
- 资助金额:
$ 34.54万 - 项目类别:
High-resolution modeling of protein-RNA interfaces
蛋白质-RNA 界面的高分辨率建模
- 批准号:
10641354 - 财政年份:2017
- 资助金额:
$ 34.54万 - 项目类别:
Rational design and functionalization of circular tandem repeat proteins
环状串联重复蛋白的合理设计和功能化
- 批准号:
9301141 - 财政年份:2017
- 资助金额:
$ 34.54万 - 项目类别:
High-resolution modeling of protein-RNA interfaces
蛋白质-RNA 界面的高分辨率建模
- 批准号:
10013238 - 财政年份:2017
- 资助金额:
$ 34.54万 - 项目类别:
相似国自然基金
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
图机器学习的理论、模型与算法设计
- 批准号:62376007
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
- 批准号:12361065
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
利用细胞内RNA结构信息结合深度学习算法设计高效细胞环境特异的CRISPR-Cas13d gRNA
- 批准号:32300521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
财富科技的监管挑战与监管设计:算法投资视角的研究
- 批准号:72303197
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 34.54万 - 项目类别:
A reference-free computational algorithm for comprehensive somatic mosaic mutation detection
一种用于综合体细胞嵌合突变检测的无参考计算算法
- 批准号:
10662755 - 财政年份:2023
- 资助金额:
$ 34.54万 - 项目类别:
Technology Assisted Treatment for Binge Eating Behavior
暴食行为的技术辅助治疗
- 批准号:
10603975 - 财政年份:2023
- 资助金额:
$ 34.54万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 34.54万 - 项目类别: