7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors

颅底肿瘤内镜切除的 7T 神经外科标测方案

基本信息

项目摘要

 DESCRIPTION (provided by applicant): Skull base tumors pose some of the greatest challenges in neurosurgery due to their complex anatomical location and frequent intricate involvement of adjacent neurovascular and optic structures. Endoscopic endonasal surgery (EES) is the most effective, minimally invasive approach to skull base tumor removal. However, the safety and applicability of the procedure is highly dependent on accurate and detailed delineation of tumor anatomy and adjacent or encased vessels and cranial nerves. There is a critical need to bridge the gap between advanced imaging techniques and image guidance in the modern operating room. The overall objective in this application is to demonstrate that optimized high resolution 7T magnetic resonance imaging (MRI) is the precise tool required to provide critical preoperative information to enable improved planning and more confident intraoperative decision-making for EES of skull base lesions. Our central hypothesis is that the information added by 7T scans will enhance surgical planning, shorten operative time, and increase confidence of intraoperative decision making when compared to the gold standard preoperative imaging. Specifically, the aims of this proposal are: 1) To develop a comprehensive 7T imaging protocol for pre- and intra-operative guidance for EES of skull base tumors and 2) to apply the developed 7T imaging protocol to surgical planning and guidance for a set of 40 patients. Under the first specific aim, we will integrate novel adiabatic RF pulses int anatomical imaging sequences to improve image quality, maximize SNR and anatomical coverage. We will combine the newly developed anatomical and diffusion MRI sequences with the existing robust TOF sequence to generate a 7T protocol targeted at visualization of cranial nerves (especially optic structures), tumor anatomy and vasculature and to validate the performance of this protocol in healthy volunteers. Under Specific Aim 2, the optimized 7T imaging protocol will be used to scan 40 patients with skull-base tumors, and the results will be compared with gold-standard 3T MRI images in 40 control patients with tumors matched by type, size, and location. The 7T images will be utilized for neurosurgical planning and will be imported into the image guidance platform to aid with intraoperative decision making and compared to controls. The innovation of this approach lies in the first application of a comprehensive 7T imaging protocol for accurate and safe neurosurgical planning, thereby bridging the gap between advanced MRI and modern surgical techniques. Our optimized techniques will utilize novel adiabatic RF pulses in 7T MRI sequences with significantly improved performance and reliability. This work is significant because the proposed 7T imaging techniques are addressing the critical need of providing precise and detailed anatomical imaging to the surgeon preoperatively, allowing for better patient selection, planning of approach, and intraoperative decision making, all of which have a high impact on patient safety and clinical outcome. This will ultimately improve the quality of neurosurgical procedures, improving management and treatment of a wide range of neurological diseases.
 描述(通过应用程序提供):颅底肿瘤由于其复杂的解剖位置以及相邻神经血管和视觉结构的经常参与而构成了神经外科的一些最大挑战。内窥镜鼻鼻手术(EES)是切除颅底肿瘤的最有效,最微创的方法。但是,该过程的安全性和适用性高度取决于肿瘤解剖结构以及邻近或包裹的血管和颅神经的准确和详细描述。迫切需要弥合现代手术室中高级成像技术和图像指导之间的差距。本应用程序的总体目的是证明优化的高分辨率7T磁共振成像(MRI)是提供关键术前信息所需的精确工具,以改善计划和更自信的颅骨基础病变EES术中决策。我们的核心假设是,与术前成像相比,7T扫描添加的信息将增强手术计划,缩短工作时间并增加术中决策的信心。具体而言,该提案的目的是:1)为颅底肿瘤的EES制定全面的7T成像协议,并为40名患者的手术计划和指导应用开发的7T成像方案。在第一个特定目的下,我们将整合新型的绝热RF脉冲INT解剖成像序列以提高图像质量,最大化SNR和解剖学覆盖率。我们将结合新开发的解剖学和扩散MRI序列与现有的稳健TOF序列,以生成针对颅神经(尤其是光学结构),肿瘤解剖结构和脉管系统的7T方案,并在健康志愿者中验证该方案的性能。在特定的目标2下,优化的7T成像方案将用于扫描40例颅底肿瘤的患者,并将结果与​​40例按类型,大小和位置匹配的肿瘤患者的金标准3T MRI图像进行比较。 7T图像将用于神经外科计划,并将进口到图像指导平台中,以帮助进行术中决策并与对照组进行比较。这种方法的创新在于首次应用综合的7T成像协议,以进行准确,安全的神经外科计划,从而弥合了高级MRI和现代手术技术之间的差距。我们优化的技术将在7T MRI序列中利用新型的绝热RF脉冲,具有显着提高的性能和可靠性。这项工作很重要,因为拟议的7T成像技术解决了为外科医生提供精确且详细的解剖成像的关键需求,从而可以更好地选择患者的选择,方法计划和术中决策,所有这些都对患者安全和临床结果产生了很大的影响。这最终将提高神经外科手术的质量,改善管理和治疗多种神经系统疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Priti Balchandani其他文献

Priti Balchandani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Priti Balchandani', 18)}}的其他基金

Gut-brain axis in Alzheimer's disease: translational 7T MRI markers and underlying mechanisms
阿尔茨海默病中的肠脑轴:转化 7T MRI 标记物和潜在机制
  • 批准号:
    10901013
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
Use of 7T multimodal imaging to detect brain changes associated with light therapy in persons with mild cognitive impairment and mild Alzheimer's Disease
使用 7T 多模态成像检测轻度认知障碍和轻度阿尔茨海默病患者与光疗相关的大脑变化
  • 批准号:
    10673010
  • 财政年份:
    2022
  • 资助金额:
    $ 38.77万
  • 项目类别:
Visualizing trigeminal neuralgia at 7 Tesla: Advancing etiological understanding and improving future clinical imaging protocols
7 特斯拉可视化三叉神经痛:促进病因学理解并改进未来的临床成像方案
  • 批准号:
    10667246
  • 财政年份:
    2022
  • 资助金额:
    $ 38.77万
  • 项目类别:
Use of 7T multimodal imaging to detect brain changes associated with light therapy in persons with mild cognitive impairment and mild Alzheimer's Disease
使用 7T 多模态成像检测轻度认知障碍和轻度阿尔茨海默病患者与光疗相关的大脑变化
  • 批准号:
    10539558
  • 财政年份:
    2022
  • 资助金额:
    $ 38.77万
  • 项目类别:
7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors
颅底肿瘤内镜切除的 7T 神经外科标测方案
  • 批准号:
    10175768
  • 财政年份:
    2020
  • 资助金额:
    $ 38.77万
  • 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
  • 批准号:
    10535458
  • 财政年份:
    2019
  • 资助金额:
    $ 38.77万
  • 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
  • 批准号:
    10685147
  • 财政年份:
    2019
  • 资助金额:
    $ 38.77万
  • 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
  • 批准号:
    9894859
  • 财政年份:
    2019
  • 资助金额:
    $ 38.77万
  • 项目类别:
Transdiagnostic Multimodal 7 Tesla MRI of the Locus Coeruleus in Human Pathological Anxiety
人类病理性焦虑中蓝斑的跨诊断多模态 7 特斯拉 MRI
  • 批准号:
    10318599
  • 财政年份:
    2019
  • 资助金额:
    $ 38.77万
  • 项目类别:
7T Neurosurgical Mapping Protocol for Endoscopic Resection of Skull Base Tumors
颅底肿瘤内镜切除的 7T 神经外科标测方案
  • 批准号:
    9259952
  • 财政年份:
    2016
  • 资助金额:
    $ 38.77万
  • 项目类别:

相似国自然基金

儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
  • 批准号:
    82360892
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
  • 批准号:
    82201271
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
    32201547
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Two-for-one Stroke Thrombectomy: A novel Dual DAC to enhance navigability, lumen size, aspiration efficiency, and persistent flow arrest in mechanical thrombectomy
二合一中风血栓切除术:一种新型双 DAC,可增强机械血栓切除术中的导航性、管腔尺寸、抽吸效率和持续流动停止
  • 批准号:
    10698538
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
Fluid mechanics approach to tissue perfusion quantification in MRI
MRI 中组织灌注定量的流体力学方法
  • 批准号:
    10720485
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
Neural Control of Choroidal Function
脉络膜功能的神经控制
  • 批准号:
    10716937
  • 财政年份:
    2023
  • 资助金额:
    $ 38.77万
  • 项目类别:
Imaging-based biomechanical assessment of abdominal aortic aneurysms for improved progression risk prediction
基于成像的腹主动脉瘤生物力学评估,以改善进展风险预测
  • 批准号:
    10481360
  • 财政年份:
    2022
  • 资助金额:
    $ 38.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了