Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
基本信息
- 批准号:9768419
- 负责人:
- 金额:$ 60.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AphorismsAttentionBehavior TherapyBehavioralBoredomCause of DeathCigaretteCollectionComplexDataDepressed moodDevelopmentEffectivenessEmotionsEnrollmentFormulationFoundationsFutureHealth behavior changeHome environmentIndividualInformal Social ControlInterventionKnowledgeLearning SkillLocationMachine LearningMalignant NeoplasmsMeasuresModelingMorbidity - disease rateNaturePathway interactionsPatient Self-ReportPlayRandomizedRecommendationResearchRiskRoleSelf EfficacySmokerSmokingSmoking Cessation InterventionSocietiesTimeTobaccoTobacco useadaptive interventionaddictionbasebehavior changecancer preventioncopingcravingdisabilityethnic diversityevidence basefield theoryhandheld mobile devicehigh riskimprovedinnovationmHealthmindfulnessmortalitynovelpositive emotional statepreventracial and ethnicrandomized trialsensorskillssmoking cessationsuccesstheorieswillingness
项目摘要
Abstract: Smoking cessation decreases morbidity and mortality and is a cornerstone of cancer prevention.
The ability to impact current and future vulnerability (e.g., high risk for a lapse) in real-time via engagement in
self-regulatory activities (e.g., behavioral substitution, mindful attention) is considered an important pathway
to quitting success. However, poor engagement represents a major barrier to maximizing the impact of self-
regulatory activities. Hence, enhancing real-time, real-world engagement in evidence-based self-regulatory
activities has the potential to improve the effectiveness of smoking cessation interventions. Just-In-Time
Adaptive Interventions (JITAIs) delivered via mobile devices have been developed for preventing and treating
addictions. JITAIs adapt over time to an individual’s changing status and are optimized to provide appropriate
intervention strategies based on real time, real world context. Organizing frameworks on JITAIs emphasize
minimizing disruptions to the daily lives and routines of the individual, by tailoring strategies not only to
vulnerability, but also to receptivity (i.e., an individual’s ability and willingness to utilize a particular
intervention). Although both vulnerability and receptivity are considered latent states that are dynamically and
constantly changing based on the constellation and temporal dynamics of emotions, context, and other factors,
no attempt has been made to systematically investigate the nature of these states, as well as how knowledge of
these states can be used to optimize real-time engagement in self-regulatory activities. To close this gap, the
proposed project will apply innovative computational approaches to one of the most extensive and
racially/ethnically diverse collection of real time, real world data on health behavior change (smoking
cessation). Intensive longitudinal self-reported and sensor data from 5 studies (3 completed and 2 ongoing) of
~1,500 smokers attempting to quit will be analyzed with advanced probabilistic latent variable models and
machine learning to investigate how the temporal dynamics and interactions of emotions, self-regulatory
capacity (SRC), context, and other factors can be used to detect (Aim 1) states of vulnerability to a lapse and
(Aim 2) states of receptivity to engaging in self-regulatory activities. We will also investigate (Aim 3) how
knowledge of these states can be used to optimize real-time engagement in self-regulatory activities by
conducting a Micro-Randomized Trial (MRT) enrolling 150 smokers attempting to quit. Utilizing a mobile
smoking cessation app, the MRT will randomize each individual multiple times per day to either (a) no
intervention prompt; (b) a prompt recommending engagement in brief (low effort) strategies; or (c) a prompt
recommending a more effortful practice of self-regulation strategies. The proposed research will be the first to
yield a comprehensive conceptual, technical, and empirical foundation necessary to develop effective JITAIs
based on dynamic models of vulnerability and receptivity.
摘要:戒烟可降低发病率和死亡率,是预防癌症的基石。
通过参与实时影响当前和未来的漏洞(例如,失误的高风险)的能力
自我调节活动(例如行为替代、正念注意力)被认为是重要途径
然而,参与度低是最大限度地发挥自我影响力的主要障碍。
因此,加强实时、现实世界的基于证据的自我监管活动。
活动有可能提高及时戒烟干预措施的有效性。
通过移动设备提供的适应性干预措施 (JITAI) 已被开发用于预防和治疗
JITAI 会随着时间的推移适应个人不断变化的状态,并进行优化以提供适当的服务。
基于实时、真实世界背景的干预策略强调 JITAI 的组织框架。
通过制定策略,最大限度地减少对个人日常生活和例行公事的干扰
脆弱性,而且还包括接受性(即个人利用特定的能力和意愿)
尽管脆弱性和接受性都被认为是动态的、潜在的状态。
根据情绪、背景和其他因素的星座和时间动态不断变化,
尚未尝试系统地调查这些状态的性质,以及这些状态的知识如何
这些状态可用于优化自我监管活动的实时参与。
拟议的项目将把创新的计算方法应用于最广泛和最广泛的领域之一
种族/族裔多样化的实时、真实世界健康行为变化数据收集(吸烟
来自 5 项研究(3 项已完成,2 项正在进行)的密集纵向自我报告和传感器数据。
将使用先进的概率潜变量模型对约 1,500 名试图戒烟的吸烟者进行分析
机器学习研究情绪的时间动态和相互作用、自我调节
能力(SRC)、背景和其他因素可用于检测(目标 1)易受故障影响的状态,并
(目标 2)参与自律活动的接受程度 我们还将调查(目标 3)如何参与。
对这些状态的了解可用于优化实时参与自律活动
开展一项微型随机试验 (MRT),招募了 150 名试图使用手机戒烟的吸烟者。
戒烟应用程序中,MRT 每天会将每个人随机多次分为 (a) 否
干预提示;(b) 提示参与简短(省力)策略;或 (c) 提示;
建议采取更有效的自我监管策略实践。拟议的研究将是第一个。
为开发有效的 JITAI 提供必要的全面概念、技术和经验基础
基于脆弱性和接受性的动态模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inbal Billie Nahum-Shani其他文献
Inbal Billie Nahum-Shani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inbal Billie Nahum-Shani', 18)}}的其他基金
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs Supplement
新颖地使用移动医疗数据来识别 JITAI 补充的脆弱性和接受度状态
- 批准号:
10564658 - 财政年份:2022
- 资助金额:
$ 60.65万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10640292 - 财政年份:2021
- 资助金额:
$ 60.65万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10473761 - 财政年份:2021
- 资助金额:
$ 60.65万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10267870 - 财政年份:2021
- 资助金额:
$ 60.65万 - 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
- 批准号:
10241985 - 财政年份:2018
- 资助金额:
$ 60.65万 - 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
- 批准号:
10090968 - 财政年份:2018
- 资助金额:
$ 60.65万 - 项目类别:
相似国自然基金
个体创业导向在数字化公司创业中的展现与效应研究:基于注意力基础观
- 批准号:72302074
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于数据自增强与多元注意力机制的结直肠图像息肉检测
- 批准号:82302310
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度学习与注意力机制的棉蚜图像识别及监测模型研究
- 批准号:32360433
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于多头注意力机制的化学修饰siRNA药物活性预测研究
- 批准号:62302079
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于忆阻器的自注意力模型研究
- 批准号:62304254
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
iTEST: Introspective Accuracy as a Novel Target for Functioning in Psychotic Disorders
iTEST:内省准确性作为精神障碍功能的新目标
- 批准号:
10642405 - 财政年份:2023
- 资助金额:
$ 60.65万 - 项目类别:
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 60.65万 - 项目类别:
Society of Behavioral Medicine 2023 Annual Meeting & Scientific Sessions
行为医学学会2023年年会
- 批准号:
10681958 - 财政年份:2023
- 资助金额:
$ 60.65万 - 项目类别: