SMART Weight Loss Management
智能减肥管理
基本信息
- 批准号:9547033
- 负责人:
- 金额:$ 9.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultBehaviorBehavior TherapyBody Weight decreasedCar PhoneCaringCellular PhoneClinicalConsumptionCounselingDependencyEarly treatmentEquilibriumEvidence based treatmentFailureGuidelinesHealthHeterogeneityHigh PrevalenceIndividualInternetKnowledgeMaintenanceMediatingMonitorMotivationObesityOutcomeOverweightParticipantPathway interactionsPatientsPoliciesPopulationPublic HealthRandomizedRegulationResearchResourcesRiskSelf EfficacyTechnologyTestingTextTimeTreatment FailureWeightcostcost effectivenessfollow-upmHealthmobile applicationnovelobesity managementobesity treatmentpopulation healthpredictive modelingprimary outcomeprogramspublic health relevancerandomized trialresponsesoundstandard of caretooltrial designuptakeweight loss intervention
项目摘要
DESCRIPTION (provided by applicant): Obesity's high prevalence and costs make it a public health crisis, but current standard of care treatment impedes uptake and depletes resources by taking a one-size-fits-all approach. Guidelines recommend provision of expensive, burdensome treatment components (e.g., counseling, meal replacement) continuously to all consumers regardless of weight loss response. Stepped care that tries less costly evidence-based treatments first, reserving more resource-intensive treatments for suboptimal responders is a logical, equitable population health management strategy. However, stepped care approaches to obesity treatment have not yet incorporated inexpensive, widely available mHealth tools. It is unclear whether conjoint clinical and cost outcomes are better optimized by providing a low cost, low intensity, autonomously controlled mHealth treatment as the initial treatment with risk of nonresponse, or by providing a more costly, traditional obesity treatment with the potential to create a dependency that undermines autonomous motivation. The potential pitfall of beginning with mHealth treatment is that long-term outcome may be poor if nonresponse to initially insufficient treatment allows demoralization to set in. To reduce that risk, we will identify nonresponders earlier than previously has been possible by applying a predictive model derived from our prior mHealth obesity research and will quickly reallocate nonresponders to augmented treatment. We propose to use a novel experimental approach, the SMART (Sequential Multiple Assignment Randomized Trial), to randomize 400 overweight/obese adults to one of two first line treatments, either (1) an app alone (APP), or (2) the app plus coaching (APP +C). Those who do not respond to the first line treatment (i.e., evidenced by failure to lose weight) will be e-randomized to one of two subsequent augmentation tactics, either: (1) Modestly Step-Up: add another mHealth component (e.g., text messages), or (2) Vigorously Step-Up: add both a mHealth component (e.g., texts) and a more traditional component (e.g., coaching, meal replacement). Responders will continue with the same first line treatment for 12 weeks. Assessments will occur at 3, 6, and 12 months to determine (1) whether mHealth or traditional obesity treatment (coaching) is the optimal first line treatment for overweight/obese adults; and (2) whether the optimal response to weight loss failure is to modestly or vigorously augment the first line treatment. As the first stepped care trial to integrate mHealth tools and implement our predictive model of weight loss failure, SMART will be the most temporally and resource efficient strategy evaluated to date.
描述(由适用提供):肥胖症的高流行率和成本使其成为公共卫生危机,但是当前的护理水平治疗通过采取一种千篇一律的方法来阻止吸收和耗尽资源。指南建议不断向所有消费者提供昂贵的,易燃的治疗组件(例如,咨询,膳食更换),无论减肥反应如何。踩踏的护理,首先尝试较少成本的基于证据的治疗方法,为次优应答者保留更多的资源密集型处理是一种合乎逻辑,公平的人口健康管理策略。但是,客观治疗的阶梯护理方法尚未纳入廉价,可用的MHealth工具。目前尚不清楚通过提供低成本,低强度,自主控制的MHealth治疗方法作为具有无反应风险的初始治疗,还是通过提供更为昂贵的传统肥胖治疗并提供创造依赖性的潜力,从而使依赖性降低自主动机的潜力,从而更好地优化了联合临床和成本结果。 MHealth治疗开始的潜在陷阱是,如果对最初不足的治疗无反应允许士气低落,那么长期结局可能会降低这种风险。为了降低这种风险,我们将通过应用我们先前的MHEALTH肥胖症研究得出的预测模型,而不是先前的未响应者。我们建议使用一种新型的实验方法,即SMART(顺序多个分配随机试验),将400个超重/肥胖的成年人随机分配到两条第一行处理中之一,即(1)单独使用应用程序(APP),或(2)App Plus Coaching(App +C)。那些对第一行治疗(即,不减肥的证明)的人将被电子随后的一种增强策略之一,要么:(1)适度加速:添加另一个MHealth组件(例如,文本消息),或(2)逐步加强:添加两个Mhealth Components(例如,又有一个传统的文本)和一本餐具(例如,更传统的)(例如,E. comportions)(E. e。响应者将继续进行相同的第一行治疗12周。评估将在3、6和12个月进行,以确定(1)MHealth还是传统的肥胖治疗(教练)是超重/肥胖成年人的最佳第一线治疗; (2)对减肥失败的最佳反应是适度还是剧烈地增强第一行处理。作为整合MHealth工具并实施我们的减肥失败预测模型的第一个阶梯护理试验,SMART将是迄今为止评估的最临时,最有效的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Inbal Billie Nahum-Shani其他文献
Sa1813 PROGNOSTIC SCORING SYSTEMS IDENTIFYING PATIENTS WITH ACUTE SEVERE ULCERATIVE COLITIS AT RISK FOR COLECTOMY BEFORE AND AFTER RESCUE INFLIXIMAB
- DOI:
10.1016/s0016-5085(23)02027-9 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:
- 作者:
Jeffrey Berinstein;Neelakanta A. Atkuri;Elliot Berinstein;Jessica L. Sheehan;Laura Johnson;Shirley Cohen-Mekelburg;Hui Jiang;Nicole Walkim;Kelley M. Kidwell;Inbal Billie Nahum-Shani;Robert J. Battat;Akbar K. Waljee;Peter D. Higgins - 通讯作者:
Peter D. Higgins
Inbal Billie Nahum-Shani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Inbal Billie Nahum-Shani', 18)}}的其他基金
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs Supplement
新颖地使用移动医疗数据来识别 JITAI 补充的脆弱性和接受度状态
- 批准号:
10564658 - 财政年份:2022
- 资助金额:
$ 9.42万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10640292 - 财政年份:2021
- 资助金额:
$ 9.42万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10473761 - 财政年份:2021
- 资助金额:
$ 9.42万 - 项目类别:
Methods for Optimizing the Integration of Adaptive Human-Delivered and Digital SUD/HIV Services
自适应人工交付和数字 SUD/HIV 服务集成的优化方法
- 批准号:
10267870 - 财政年份:2021
- 资助金额:
$ 9.42万 - 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
- 批准号:
10241985 - 财政年份:2018
- 资助金额:
$ 9.42万 - 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
- 批准号:
9768419 - 财政年份:2018
- 资助金额:
$ 9.42万 - 项目类别:
Novel use of mHealth data to identify states of vulnerability and receptivity to JITAIs
新颖地使用移动医疗数据来识别 JITAI 的脆弱性和接受度状态
- 批准号:
10090968 - 财政年份:2018
- 资助金额:
$ 9.42万 - 项目类别:
相似国自然基金
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于行为整合理论的成人睡眠素养提升机制及实证研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于行为整合理论的成人睡眠素养提升机制及实证研究
- 批准号:72204117
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
羽毛球运动对成人视运动知觉可塑性的影响:行为和神经机制研究
- 批准号:31471003
- 批准年份:2014
- 资助金额:70.0 万元
- 项目类别:面上项目
社区医务人员干预成人超重和肥胖的行为机制:基于计划行为理论的实证研究
- 批准号:71303250
- 批准年份:2013
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
- 批准号:
10827051 - 财政年份:2024
- 资助金额:
$ 9.42万 - 项目类别:
Longitudinal Modeling of Pro-Inflammatory Cytokines, Hazardous Alcohol Use, and Cerebral Metabolites as Predictors of Neurocognitive Change in People with HIV
促炎细胞因子、有害酒精使用和脑代谢物的纵向建模作为 HIV 感染者神经认知变化的预测因子
- 批准号:
10838849 - 财政年份:2024
- 资助金额:
$ 9.42万 - 项目类别:
Effects of tACS on alcohol-induced cognitive and neurochemical deficits
tACS 对酒精引起的认知和神经化学缺陷的影响
- 批准号:
10825849 - 财政年份:2024
- 资助金额:
$ 9.42万 - 项目类别: