Mechanistic Monitoring of Ultrasound Neuromodulation
超声神经调节的机械监测
基本信息
- 批准号:9765827
- 负责人:
- 金额:$ 66.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-04 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAffectAnimalsBrainBrain regionCentral Nervous System DiseasesConfusionDeep Brain StimulationDizzinessDyskinetic syndromeElectrodesElectroencephalographyElectrophysiology (science)EngineeringFeedbackFiber OpticsFocused UltrasoundFunctional ImagingFunctional Magnetic Resonance ImagingHumanImageImmunohistochemistryLinkMechanicsMembraneMental DepressionMental disordersMethodologyMethodsMidbrain structureMonitorMotivationMotorMovementMusMydriasisNatureNeurologyNeuronsNeurosciencesPathological GamblingPatientsPenetrationPerfusionPharmacotherapyPhysiologicalProceduresRadiationReportingReproducibilityResearch PersonnelRiskRodentSaccadesScalp structureSleeplessnessStructureSystemTechnical ExpertiseTechniquesTechnologyTestingTimeTissuesUltrasonographyanatomic imagingbehavioral outcomebrain tissuecraniumdesignhealthy volunteerhemodynamicshuman subjectimprovedin vivolimb movementmillimetermultidisciplinaryneuroregulationneurosurgerynon-drugnonhuman primatenovelresponseside effectsimulationtooltranslation to humans
项目摘要
Central Nervous System diseases affect several millions of patients in the U.S. Current drug
treatments are often associated with side-effects such as dyskinesia, confusion, dizziness,
insomnia, depression, and pathological gambling among others. Neuromodulation can be
achieved either with noninvasive techniques that are depth limited or invasive procedures that
can go to large depths. Over the past few years, transcranial focused ultrasound (FUS) has been
shown capable of both stimulating and suppressing brain activity in vivo. Ultrasound has several
advantages over the aforementioned technologies for deep brain stimulation as it can penetrate
the brain over several centimeters through the intact scalp and skull. Given its entirely noninvasive
and nonionizing nature, the technique has been shown to be translatable to human brain studies
with deep penetration (of several centimeters) without requiring introduction of electrodes or optic
fibers inside the brain. In the proposed study, we will aim to harness from the technical expertise
available by the group of investigators so as to develop monitoring of the underlying physical and
physiological mechanisms in vivo and in real time and simultaneously sync technologies that will
allow translation to humans. The three physical mechanisms to be investigated are radiation
force, cavitation and perfusion, all of which can be monitored in conjunction with FUS modulation
by the PI’s group. Therefore, the underlying hypothesis of the proposed studies is that if these
underlying mechanisms, or the combination thereof, can be monitored during application, FUS
can be more targeted and better monitored to improve on its reproducibility and optimization. To
this end, we have assembled a highly complementary, multi-disciplinary team from ultrasound
engineering, anatomical and functional imaging, neuroscience, neurology, neuroengineering and
neurosurgery. The methodologies proposed require breakthroughs in current FUS methodologies
used in order to selectively focus (on the order of a few millimeters) and steer across both shallow
and deep-seated regions (on the order of several centimeters in depth) as well as informing on
the physical (i.e., radiation force or cavitation - mechanical tissue effects exerted by ultrasound
on the brain) and physiological (i.e., neuronal effects as a result of the aforementioned mechanical
tissue effects) mechanism in real time. This study is thus aimed to optimize targeting and efficacy
of FUS neuromodulation by mapping the physical mechanism so as to better explore noninvasive
modulation of motor and motivation responses in humans for the first time for the ultimate
treatment of conditions ranging from movement to psychiatric disorders.
中枢神经系统疾病影响美国目前的数百万患者
治疗通常与副作用有关,例如运动障碍,混乱,头晕,
失眠,抑郁和病理赌博等。神经调节可以
通过无创的技术来实现,该技术是深度有限的或侵入性的程序
可以进入大深度。在过去的几年中,thrancranial专注的超声波(FUS)一直是
显示能够在体内刺激和抑制大脑活性。超声有几个
比优先技术的优势技术可以穿透,因为它可以穿透
通过完整的头皮和头骨,大脑在几厘米上。鉴于其完全无创的
和非电离性质,该技术已被证明可以翻译成人脑研究
具有深度渗透(数厘米),而无需引入电极或光学元件
大脑内部的纤维。在拟议的研究中,我们将旨在利用技术专长
由调查人员小组获得,以开发对基础物理和
生理机制在体内和实时以及同时同步技术
允许翻译为人类。要研究的三种物理机制是辐射
力,气腔和灌注,所有这些都可以与FUS调制一起监测
由PI小组。因此,拟议的研究的基本假设是,如果这些假设
可以在应用过程中监视基本机制或其组合
可以更具针对性和更好的监控,以改善其可重复性和优化。到
这最后,我们组装了一支从超声波
工程,解剖和功能成像,神经科学,神经学,神经工程和
神经外科。提出的方法需要在当前的FUS方法中进行突破
用于选择性地集中精力(几毫米的顺序),并跨过两个浅
和深处的区域(以深度为几厘米的顺序),并通知
物理(即辐射力或空化 - 超声施加的机械组织效应
在大脑上)和生理学(即,由于预先提前的机械作用而导致神经元作用
组织效应)实时机制。因此,这项研究的目的是优化目标和有效性
通过映射物理机制来更好地探索非侵入性,通过映射FUS神经调节
首次对人类的运动和动机反应调节最终
治疗从运动到精神疾病的疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elisa E. Konofagou其他文献
DOSSIER IMAGERIE ACOUSTIQUE ET OPTIQUE DES MILIEUX BIOLOGIQUES OPTICAL AND ACOUSTICAL IMAGING OF BIOLOGICAL MEDIA Elastography
DOSIER IMAGERIE ACUSTIQUE ET OPTIQUE DE MILIEUX BIOLOGIQUES 生物介质的光学和声学成像 弹性成像
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Jonathan Ophir;F. Kallel;Tomy Varghese;Elisa E. Konofagou;S. Alam;Thomas A. Krouskop;Brian S. Garra;R. Righetti - 通讯作者:
R. Righetti
Amplitude-Modulation Frequency Optimization for Enhancing Harmonic Motion Imaging Performance of Breast Tumors in the Clinic
- DOI:
10.1016/j.ultrasmedbio.2024.09.021 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Yangpei Liu;Md Murad Hossain;Xiaoyue Judy Li;Elisa E. Konofagou - 通讯作者:
Elisa E. Konofagou
Elastography : Imagerie acoustique et optique des milieux biologiques
弹性成像:声学图像和生物环境光学
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Jonathan Ophir;F. Kallel;Tomy Varghese;Elisa E. Konofagou;S. Alam;Thomas A. Krouskop;Brian S. Garra;R. Righetti - 通讯作者:
R. Righetti
Focused Ultrasound Evoked Responses in Dorsal Root Ganglion Neurons (DRG) and HEK293 Cells
- DOI:
10.1016/j.bpj.2017.11.3627 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Danny M. Florez-Paz;Chi-Kun Tong;Benjamin U. Hoffman;Stephen A. Lee;Elisa E. Konofagou;Ellen A. Lumpkin - 通讯作者:
Ellen A. Lumpkin
Elisa E. Konofagou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elisa E. Konofagou', 18)}}的其他基金
Assessment of ultrasound-facilitated neurotherapeutics in Alzheimer's disease
超声辅助神经疗法治疗阿尔茨海默病的评估
- 批准号:
10901036 - 财政年份:2023
- 资助金额:
$ 66.37万 - 项目类别:
Mechanical characterization of carotid plaques for stroke risk assessment
用于中风风险评估的颈动脉斑块的机械特征
- 批准号:
10735746 - 财政年份:2023
- 资助金额:
$ 66.37万 - 项目类别:
A theranostic system for ultrasound-facilitated blood-brain barrier opening
超声促进血脑屏障开放的治疗诊断系统
- 批准号:
10541109 - 财政年份:2020
- 资助金额:
$ 66.37万 - 项目类别:
A theranostic system for ultrasound-facilitated blood-brain barrier opening
超声促进血脑屏障开放的治疗诊断系统
- 批准号:
10318649 - 财政年份:2020
- 资助金额:
$ 66.37万 - 项目类别:
A theranostic system for ultrasound-facilitated blood-brain barrier opening
超声促进血脑屏障开放的治疗诊断系统
- 批准号:
9917485 - 财政年份:2020
- 资助金额:
$ 66.37万 - 项目类别:
Mechanistic Monitoring of Ultrasound Neuromodulation
超声神经调节的机械监测
- 批准号:
10087928 - 财政年份:2019
- 资助金额:
$ 66.37万 - 项目类别:
Mechanistic Monitoring of Ultrasound Neuromodulation
超声神经调节的机械监测
- 批准号:
9906227 - 财政年份:2019
- 资助金额:
$ 66.37万 - 项目类别:
Mechanistic Monitoring of Ultrasound Neuromodulation
超声神经调节的机械监测
- 批准号:
10376177 - 财政年份:2019
- 资助金额:
$ 66.37万 - 项目类别:
An integrated theranostic system for breast cancer
乳腺癌综合治疗诊断系统
- 批准号:
9975111 - 财政年份:2018
- 资助金额:
$ 66.37万 - 项目类别:
An integrated theranostic system for breast cancer
乳腺癌综合治疗诊断系统
- 批准号:
10405593 - 财政年份:2018
- 资助金额:
$ 66.37万 - 项目类别:
相似国自然基金
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
降水变化下土壤动物协作效应对土壤有机质形成过程的影响
- 批准号:42307409
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
城市化对土壤动物宿主-寄生虫关系的影响机制研究
- 批准号:32301430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两栖动物(蛙类)对新型卤代有机污染物的生物富集及其对污染物环境迁移影响的研究
- 批准号:42307349
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
- 批准号:
10715925 - 财政年份:2023
- 资助金额:
$ 66.37万 - 项目类别:
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
- 批准号:
10727499 - 财政年份:2023
- 资助金额:
$ 66.37万 - 项目类别:
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 66.37万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 66.37万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 66.37万 - 项目类别: