Cell biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
基本信息
- 批准号:9892184
- 负责人:
- 金额:$ 4.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesBindingBinding ProteinsBiologicalCell divisionCellsCellular biologyCentromereChromosome SegregationChromosome abnormalityChromosomesConflict (Psychology)DNADNA SequenceDefectDevelopmentEnsureEpigenetic ProcessEukaryotaEvolutionFamilyFemaleFertilityGeneticGenetic MaterialsGenomeGoalsHybridsIndividualInheritedKinetochoresLawsLeadMeiosisModelingMolecular AbnormalityNatural SelectionsOrganismOutcomePopulationPregnancy lossProcessProteinsRegulationRepetitive SequenceReproductive BiologySystemcosteggexperimental studyfascinateinsightmalemouse modelnext generationpressurereproductivereproductive fitnesssegregationsperm cell
项目摘要
The centromere drive hypothesis invokes genetic conflict to explain the paradox that both centromere DNA
sequences and centromere-binding proteins have evolved rapidly, despite highly conserved centromere
function across eukaryotes. Genetic conflict at centromeres is grounded in the asymmetry inherent in female
meiosis I (MI). In this reductionist cell division, one chromosome from each homologous pair remains in the
egg and can be transmitted to the next generation, while the other is degraded in the polar body. Natural
selection strongly favors any allele that can increase its chance of remaining in the egg, in violation of Mendel's
First Law (Law of Segregation). Such biased chromosome segregation in meiosis does occur and is a form of
meiotic drive. The first part of the centromere drive hypothesis is that rapid evolution of centromere DNA is
driven by competition to orient towards the spindle pole that will remain in the egg. The model is that expansion
of repetitive sequences at a centromere leads to formation of a larger kinetochore and preferential retention in
the egg. The second part of the hypothesis explains the evolution of centromere proteins through conflict
between individual centromeres, which expand to gain a reproductive advantage, and the reproductive fitness
of the organism. If differences between centromeres of homologous chromosomes cause defects in male
meiosis, this fertility cost provides selective pressure favoring alleles of centromere-binding proteins that
equalize centromeres and suppress drive by binding independent of sequence. The centromere drive
hypothesis has had a major impact on the centromere field because it provides a conceptual framework for
understanding the evolution of centromere DNA and centromere proteins, but the underlying cell biological
mechanisms are unknown. This proposal addresses three major gaps in our understanding of centromere
drive. First, how does centromere DNA sequence influence centromere function? Centromeres are defined
epigenetically in most organisms, and the contribution of sequence has long been unclear. Second, how is
biased segregation in MI achieved? The mechanism by which one centromere preferentially remains in the egg
is unknown. Third, is there a fertility cost in male meiosis? Direct evidence for this crucial component of the
drive hypothesis is scant. If there is a cost, what is the mechanistic basis? To address these questions, we
have established an experimental system in which we observe drive, using a hybrid mouse model created by
crossing two strains with different centromeres. Genetic conflict has shaped many aspects of our genomes,
and centromeres are a particularly fascinating case because of the implications for non-Mendelian inheritance.
The outcomes of our experiments will provide the first mechanistic insight into the cell biology underlying
centromere drive. With broad consequences for reproductive biology and chromosome evolution, this project
represents a unique contribution to the field of evolutionary cell biology.
Centromere驱动假说引起了遗传冲突,以解释两个Centromere DNA的悖论
尽管高度保守的中心粒
跨真核生物的功能。 centromeres的遗传冲突基于女性固有的不对称性
减数分裂I(MI)。在这种还原主义的细胞分裂中,每个同源对中的一个染色体保留在
鸡蛋可以传输到下一代,而另一个则降解在极体中。自然的
选择强烈利用任何可以增加其在鸡蛋中留在鸡蛋中的机会的等位基因,违反了门德尔的
第一法(隔离法)。确实发生了减数分裂中的这种偏见的染色体分离
减数分裂驱动。 Centromere驱动假设的第一部分是Centromere DNA的快速演变为
在竞争的驱动下,将留在鸡蛋中的主轴杆方向。该模型是扩展
丝粒处的重复序列的形成较大的动物学,并优先保留
鸡蛋。假设的第二部分解释了通过冲突通过冲突的中心粒蛋白的演变
在各个中心粒之间扩展以获得生殖优势和生殖健康
有机体。如果同源染色体的centromeres之间的差异导致男性缺陷
减数分裂,这种生育成本提供了有选择的压力,有利于共粒结合蛋白的等位基因
通过与序列无关的结合来均衡中心粒并抑制驱动。 Centromere驱动器
假设对Centromere领域产生了重大影响,因为它为
了解Centromere DNA和Centromere蛋白的演变,但潜在的细胞生物学
机制是未知的。该提案解决了我们对Centromere的理解的三个主要差距
驾驶。首先,CentRomere DNA序列如何影响Centromere的功能?定义了中心粒
在大多数生物体中,表观遗传学,序列的贡献一直尚不清楚。第二,怎么了
MI中有偏见的隔离?一个丝粒优先保留在鸡蛋中的机制
是未知的。第三,男性减数分裂成本有生育能力吗?直接证据证明了这一关键组成部分
驱动假设很少。如果有成本,机械基础是什么?为了解决这些问题,我们
已经建立了一个实验系统,我们使用由由混合鼠标模型创建的混合鼠标模型来观察驱动器
与不同的丝粒跨越两个菌株。遗传冲突塑造了我们基因组的许多方面,
由于对非孟德尔继承的意义,Centromeres是一个特别令人着迷的案例。
我们实验的结果将提供对细胞生物学基础的首次机械洞察力
Centromere驱动器。该项目对生殖生物学和染色体进化产生了广泛的影响,
代表对进化细胞生物学领域的独特贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lampson其他文献
Michael Lampson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lampson', 18)}}的其他基金
Evolutionary innovation to preserve zygotic genome integrity
保持合子基因组完整性的进化创新
- 批准号:
10216317 - 财政年份:2020
- 资助金额:
$ 4.49万 - 项目类别:
Evolutionary innovation to preserve zygotic genome integrity
保持合子基因组完整性的进化创新
- 批准号:
10040108 - 财政年份:2020
- 资助金额:
$ 4.49万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
HMGB1 in EB-Associated Squamous Cell Carcinoma
EB 相关鳞状细胞癌中的 HMGB1
- 批准号:
10676346 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Develop an engineered Cas effector for in vivo cell-targeted delivery in the eye to treat autosomal dominant BEST disease
开发工程化 Cas 效应器,用于眼内体内细胞靶向递送,以治疗常染色体显性 BEST 疾病
- 批准号:
10668167 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别:
Exploring the function and shedding of a potential C. elegans Neuregulin
探索潜在的线虫神经调节蛋白的功能和脱落
- 批准号:
10629996 - 财政年份:2023
- 资助金额:
$ 4.49万 - 项目类别: