Evolutionary innovation to preserve zygotic genome integrity
保持合子基因组完整性的进化创新
基本信息
- 批准号:10216317
- 负责人:
- 金额:$ 20.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AneuploidyAnimal ModelBiologicalBiological AssayBiological ModelsBiological ProcessCell CycleCell physiologyCellsCentromereChromosome SegregationChromosome abnormalityChromosomesDNADataDefectDepositionDevelopmentEmbryoEpigenetic ProcessEvolutionExhibitsFertilityFertilization in VitroFutureGeneticGenomeGenome StabilityGoalsHumanHybridsImmunofluorescence ImmunologicIncidenceMaternal AgeMitosisMitoticModelingMolecularMolecular EvolutionMusNatural SelectionsPloidiesProcessProteinsRecurrenceResolutionRiskSchemeSystemTINF2 geneTechnologyTestingUntranslated RNAVariantbaseblastocystblastomere structurechromosome losschromosome missegregationconditional knockoutdevelopmental diseasedynamical evolutionearly pregnancy lossegggenome editinggenome integrityinnovationlensmultiple myeloma M Proteinpreimplantationpreservationsperm celltelomeretransmission processzygote
项目摘要
Chromosomal abnormalities, particularly aneuploidies, are prevalent during the earliest cell cycles in pre-
implantation human embryos. The high incidence of mitotic errors is puzzling – stable chromosome
transmission represents a fundamental process ostensibly honed by natural selection. However, many of the
underlying proteins, including centromere proteins that direct chromosome segregation and telomere proteins
that preserve chromosome ends, evolve rapidly under positive selection. This paradox of conserved cellular
processes supported by unconserved machinery suggests recurrent innovation. A proposed but largely
untested resolution to this paradox is that rapid evolution of repetitive DNA drives the evolution of proteins that
package this DNA. Under this co-evolution model, constantly changing repetitive DNA compromises viability
and/or fertility, spurring adaptation at chromosomal proteins that preserve genome stability. Data from non-
mammalian model organisms implicates the very earliest embryonic cycles. Here we consider the distinct
challenges posed by sperm-deposited DNA, which enters the egg highly compact and inert and is transformed
into competent chromosomes by maternal proteins. We hypothesize that maternally-deposited proteins evolve
rapidly to remodel and establish centromeres and telomeres on ever-evolving paternal repetitive DNA. Using
mouse as a mammalian model system, we exploit both natural variation in Mus centromeric and telomeric
repetitive DNA content and divergent maternal proteins from M. musculus relatives to study the cell biological
consequences of ‘mismatched’ paternal repetitive DNA and maternally provisioned proteins. Our hypothesis
predicts that maternally-provisioned proteins adapted to repetitive DNA in one species will not function
optimally when confronted with divergent paternal centromeres and telomeres of another species. Our specific
aims are to (1) establish an in vitro fertilization (IVF) scheme to systematically vary the paternal DNA and (2)
replace rapidly-evolving maternal proteins with diverged versions from related species. In each case, we will
determine the consequences for centromere and telomere packaging and embryonic genome stability. This
innovative, evolution-guided functional approach reveals otherwise invisible genetic and epigenetic
determinants of early embryonic viability. Our overall goal is to establish an integrated experimental system
that allows us to challenge diverged, maternally provisioned proteins with paternal genomes of varying repeat
number and sequence, providing crucial support for a future R01 that investigates how the zygote restores
epigenetic symmetry between essential chromosomal loci that diverge genetically between the maternal and
paternal genomes. Defining the centromere and telomere factors at the interface of dynamic evolution with
cognate repetitive DNA will expose an underappreciated co-evolutionary process in the pre-implantation
embryo. Under this model, the often ignored repetitive DNA composition of paternal and maternal genomes
imperils genome stability and transmission, a hallmark of failed human IVF and early pregnancy loss.
染色体异常,特别是非整倍体,在早期细胞周期中普遍存在。
植入人类胚胎时,有丝分裂错误的高发生率令人费解——稳定的染色体。
传播代表了一个表面上由自然选择磨练出来的基本过程,然而,其中的许多过程。
基础蛋白质,包括指导染色体分离的着丝粒蛋白和端粒蛋白
保留染色体末端的细胞在正选择下迅速进化。
由不保守的机器支持的过程表明了一项拟议的但主要是创新。
对于这一悖论,未经检验的解决方案是重复 DNA 的快速进化驱动了蛋白质的进化,
在这种共同进化模型下,不断变化的重复 DNA 会损害生存能力。
和/或生育力,刺激染色体蛋白的适应,从而保持基因组的稳定性。
哺乳动物模式生物涉及最早的胚胎周期。在这里我们考虑不同的胚胎周期。
精子沉积的 DNA 所带来的挑战,该 DNA 进入卵子时高度紧凑且惰性,并发生转化
我们帮助母体沉积的蛋白质进化成有能力的染色体。
使用不断进化的父系重复DNA快速重塑和建立着丝粒和端粒。
小鼠作为哺乳动物模型系统,我们利用小鼠着丝粒和端粒的自然变异
利用来自小家鼠近缘种的重复 DNA 含量和不同的母体蛋白来研究细胞生物学
我们的假设是父系重复DNA和母系提供的蛋白质“不匹配”的后果。
预测母体提供的适应某一物种重复 DNA 的蛋白质将无法发挥作用
当面对另一个物种的不同父系着丝粒和端粒时,效果最佳。
目标是 (1) 建立体外受精 (IVF) 方案以系统地改变父本 DNA 以及 (2)
在每种情况下,我们都会用来自相关物种的不同版本替换快速进化的母体蛋白质。
确定对着丝粒和端粒包装以及胚胎基因组稳定性的影响。
创新的、进化引导的功能方法揭示了原本看不见的遗传和表观遗传
我们的总体目标是建立一个综合的实验系统。
这使我们能够用不同重复的父本基因组来挑战不同的、母本提供的蛋白质
编号和序列,为未来研究受精卵如何恢复的 R01 提供重要支持
母体和母体之间遗传差异的重要染色体位点之间的表观遗传对称性
定义动态进化界面的着丝粒和端粒因子。
同源重复DNA将暴露植入前未被充分认识的共同进化过程
在这种模型下,父本和母本基因组的重复DNA组成经常被忽视。
危及基因组稳定性和传播,这是人类体外受精失败和早期妊娠流产的标志。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Lampson其他文献
Michael Lampson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Lampson', 18)}}的其他基金
Evolutionary innovation to preserve zygotic genome integrity
保持合子基因组完整性的进化创新
- 批准号:
10040108 - 财政年份:2020
- 资助金额:
$ 20.31万 - 项目类别:
Cell Biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
- 批准号:
10605289 - 财政年份:2017
- 资助金额:
$ 20.31万 - 项目类别:
Cell biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
- 批准号:
10174942 - 财政年份:2017
- 资助金额:
$ 20.31万 - 项目类别:
Cell biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
- 批准号:
10385950 - 财政年份:2017
- 资助金额:
$ 20.31万 - 项目类别:
Cell Biological mechanisms of centromere drive
着丝粒驱动的细胞生物学机制
- 批准号:
10404859 - 财政年份:2017
- 资助金额:
$ 20.31万 - 项目类别:
相似国自然基金
Gemykibivirus生物学特性的研究及感染小鼠动物模型的建立
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
低氧诱导的外泌体OTUB1调控血管瘤内皮细胞生物学行为的作用及机制研究
- 批准号:81901022
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
新型椎间盘退变动物模型的构建及其应力生物学的机制研究
- 批准号:81874013
- 批准年份:2018
- 资助金额:80.0 万元
- 项目类别:面上项目
硼酸盐生物活性玻璃对双膦酸盐相关性颌骨坏死的修复作用及机制研究
- 批准号:81701028
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
特异高表达miR-20a-5p、miR-29b-3p、miR-431-5p在后纵韧带骨化发生发展中作用机制的研究
- 批准号:81702198
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of necrosis in the evolution of highly metastatic and chemo-resistant breast cancers
坏死在高度转移性和化疗耐药性乳腺癌演变中的作用
- 批准号:
10736486 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Understanding how variations in nuclear size after whole genome doubling affect tumorigenesis
了解全基因组加倍后核大小的变化如何影响肿瘤发生
- 批准号:
10607178 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Systematic elucidation of DNA sequence codes that regulate meiotic recombination
系统阐明调节减数分裂重组的 DNA 序列代码
- 批准号:
10418872 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别: