Airyscan-based Confocal Phase Tomography for high-resolution 3D imaging of cell growth- Administrative supplement

基于 Airyscan 的共焦相位断层扫描,用于细胞生长的高分辨率 3D 成像 - 行政补充

基本信息

项目摘要

Project Summary Growth regulation of mammalian cells has been described as "One of the last big unsolved problems in cell biology". The ability to measure accurately the growth rate of single cells has been the main obstacle in answering this question. From a clinical perspective, the basic understating of cell growth kinetics and how it is modulated by disease and treatment will allow for more targeted drug development. In recent years, there has been a significant interest in multidisciplinary work by biomedical engineers and scientists with a vision of developing 3D ex vivo tissue models of human organ function, anatomy, and disease. These 3D cellular systems are referred interchangeably as organoid, organotypic, or spheroid (spherical organoid). Organoids self-assemble under proper conditions, i.e., when relevant components, such as extracellular matrix (ECM) proteins, are present. Organoids are well documented to better recapitulate aspects of in vivo organ function and human disease. The common tool for analysis of such systems has been confocal (fluorescence) microscopy of fixed specimens. However, this approach does not reveal structural information in the center of the construct and, most importantly, is limited in terms of time-lapse imaging. There is a critical need for revealing subcellular structures in label-free mode with high contrast, which allows for dynamic, non- destructive imaging. At the same time, quantifying the dry mass of the organoid and its cellular components will inform on the basic organ function and disease, with and without treatment. We propose to develop a practical dry mass assay for 2D cell populations, as well as 3D organoids, based on a novel imaging method developed in our laboratory: Spatial Light Interference Microscopy (SLIM) for 2D cultures and Gradient Light Interference Microscopy (GLIM) for 3D organoids. SLIM/GLIM takes advantage of the fact that optical phase delay accumulated through a live cell is linearly proportional to the dry mass (non-aqueous content) of the cell. Due to its particular interferometric principle, GLIM significantly suppresses multiple scattering and, as result, is capable of imaging thick specimens such as organoid/spheroids. The project aims to optimize and translate the composite SLIM/GLIM technology into a cell growth assay instrument that can be broadly adopted by researchers in both the research and pharma markets. The supplement will enable the development of the mass measurement system in a confocal geometry, with higher depth resolution, and potential for broader adoption.
项目概要 哺乳动物细胞的生长调节被描述为“细胞中最后一个未解决的大问题之一” 生物学”。准确测量单细胞生长速率的能力一直是该领域的主要障碍 回答这个问题。从临床角度,对细胞生长动力学及其原理的基本理解 受疾病和治疗的调节将允许更有针对性的药物开发。 近年来,生物医学工程师和科学家对多学科工作产生了浓厚的兴趣。 科学家们的愿景是开发人体器官功能、解剖学和疾病的 3D 离体组织模型。 这些 3D 细胞系统可互换地称为类器官、器官型或球体(球形 类器官)。类器官在适当的条件下自组装,即当相关组件,例如 存在细胞外基质(ECM)蛋白。类器官有详细记录,可以更好地概括各个方面 体内器官功能和人类疾病。分析此类系统的常用工具是共焦 固定样本的(荧光)显微镜检查。然而,这种方法并没有揭示结构信息 结构的中心,最重要的是,在延时成像方面受到限制。有一个关键的 需要以高对比度的无标记模式揭示亚细胞结构,这允许动态、非 破坏性成像。同时,量化类器官的干质量及其细胞成分将 告知基本器官功能和疾病,无论是否接受治疗。 我们建议开发一种适用于 2D 细胞群以及 3D 类器官的实用干质量测定法, 基于我们实验室开发的一种新颖的成像方法:空间光干涉显微镜 (SLIM) 用于 2D 培养,梯度光干涉显微镜 (GLIM) 用于 3D 类器官。纤薄/闪亮 利用通过活细胞累积的光学相位延迟是线性的这一事实 与细胞的干质量(非水含量)成正比。由于其特殊的干涉测量 原理上,GLIM 显着抑制多重散射,因此能够对厚层成像 样本,例如类器官/球体。该项目旨在优化和转化复合材料 将SLIM/GLIM技术打造为可被研究人员广泛采用的细胞生长检测仪器 在研究和制药市场。补充将促进群众的发展 共焦几何测量系统,具有更高的深度分辨率,并且具有更广泛的潜力 采用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabriel Popescu其他文献

Gabriel Popescu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gabriel Popescu', 18)}}的其他基金

High accuracy optical growth assay of 3D cellular systems
3D 细胞系统的高精度光学生长测定
  • 批准号:
    10094216
  • 财政年份:
    2019
  • 资助金额:
    $ 24.98万
  • 项目类别:
Label free imaging of blood smears and tissue biopsies
血涂片和组织活检的无标记成像
  • 批准号:
    8058667
  • 财政年份:
    2010
  • 资助金额:
    $ 24.98万
  • 项目类别:
Label free imaging of blood smears and tissue biopsies
血涂片和组织活检的无标记成像
  • 批准号:
    7852748
  • 财政年份:
    2010
  • 资助金额:
    $ 24.98万
  • 项目类别:

相似海外基金

The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)Research Core - EIS
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
  • 批准号:
    10686546
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
Evaluation and optimization of NWB neurophysiology software and data in the cloud
NWB 神经生理学软件和云数据的评估和优化
  • 批准号:
    10827688
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
Developing a pragmatic guide to implementing social risk referrals: A partnership between Caring Health Center (CHC) and the Implementation Science Center for Cancer
制定实施社会风险转诊的实用指南:关爱健康中心 (CHC) 与癌症实施科学中心之间的合作伙伴关系
  • 批准号:
    10822141
  • 财政年份:
    2023
  • 资助金额:
    $ 24.98万
  • 项目类别:
Aging effects on the neural coding of proactive and reactive cognitive control: Administrative Supplement
衰老对主动和反应性认知控制神经编码的影响:行政补充
  • 批准号:
    10715441
  • 财政年份:
    2022
  • 资助金额:
    $ 24.98万
  • 项目类别:
CoARS Administrative Supplement
CoARS 行政补充
  • 批准号:
    10535154
  • 财政年份:
    2022
  • 资助金额:
    $ 24.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了