Informatics Core

信息学核心

基本信息

项目摘要

The Informatics Core (IC) will translate patient data on chronic lower back pain (cLBP) collected by UCSF REACH into translational models of clinical intelligence that improve cLBP outcomes. By coupling UCSF's extensive clinical experience with this second-to-none infrastructure to perform AI research based on EHR data, the IC has the potential to produce innovative collaborative research that significantly improves cLBP outcomes for patients. The overarching goal of IC is to work in symbiosis with other UCSF REACH Research and Clinical cores to develop novel AI methodologies for interpreting imaging and other Electronic Health Record (EHR) data to significantly improve cLBP care. In order to enable the full utilization of data collected by UCSF REACH, IC will aid in the development and clinical application of statistical and machine learning methods with the following specific aims. In in Aim 1, to identify patient subgroups based on cLBP phenotypes, we will work with the Reall other cores to use the existing curated EHR and newly collected data from cLBP patients to better understand cLBP disease pathways. To analyze trade-offs and synergies between treatment objectives, IC will apply canonical correlation analysis to discover clinical insights potential synergies and trade-offs between various treatment outcomes (pain, physical and psychosocial disability metrics) to develop machine learning methods for predicting patient-specific treatment response. Finally, IC will apply state-of-the art convolutional neural network techniques in predicting clinically relevant outcomes from medical imaging to optimize this clinical insight and personalize treatment plans for patients.
Informatics Core(IC)将翻译有关UCSF收集的慢性下背部疼痛(CLBP)的患者数据 进入临床智能的转化模型,以改善CLBP结果。通过耦合UCSF的耦合 基于EHR数据进行AI研究的首次进行AI研究,广泛的临床经验, IC有可能产生创新的协作研究,从而大大改善CLBP的结果 适用于患者。 IC的总体目标是与其他UCSF进行共生研究和临床 核心开发用于解释成像和其他电子健康记录(EHR)数据的新型AI方法论 显着改善CLBP护理。为了使UCSF收集的数据完全利用,IC 将有助于开发和临床应用统计和机器学习方法的应用 具体目标。在AIM 1中,为了确定基于CLBP表型的患者亚组,我们将与 使用其他核心使用现有的策划EHR和来自CLBP患者的新收集的数据以更好 了解CLBP疾病途径。为了分析治疗目标之间的权衡和协同作用, 将应用规范相关分析,以发现临床见解潜在的协同和权衡 各种治疗结果(疼痛,身体和社会心理残疾指标)开发机器学习 预测患者特异性治疗反应的方法。最后,IC将应用最先进的卷积 神经网络技术在预测医学成像的临床相关结果以优化这一点 临床洞察力和个性化患者的治疗计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dexter D Hadley其他文献

Dexter D Hadley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dexter D Hadley', 18)}}的其他基金

Informatics Core
信息学核心
  • 批准号:
    10765800
  • 财政年份:
    2019
  • 资助金额:
    $ 144.62万
  • 项目类别:
Crowd-Assisted Deep Learning (CrADLe) Digital Curation to Translate Big Data into Precision Medicine
群体辅助深度学习 (CrADLe) 数字管理将大数据转化为精准医学
  • 批准号:
    10063300
  • 财政年份:
    2017
  • 资助金额:
    $ 144.62万
  • 项目类别:
Crowd-Assisted Deep Learning (CrADLe) Digital Curation to Translate Big Data into Precision Medicine
群体辅助深度学习 (CrADLe) 数字管理将大数据转化为精准医学
  • 批准号:
    9979659
  • 财政年份:
    2017
  • 资助金额:
    $ 144.62万
  • 项目类别:
Crowd-Assisted Deep Learning (CrADLe) Digital Curation to Translate Big Data into Precision Medicine
群体辅助深度学习 (CrADLe) 数字管理将大数据转化为精准医学
  • 批准号:
    9403171
  • 财政年份:
    2017
  • 资助金额:
    $ 144.62万
  • 项目类别:

相似国自然基金

基于微球透镜阵列的数字化检测技术用于阿尔茨海默病蛋白标志物检测的研究
  • 批准号:
    62205366
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新型近红外AIE核酸胶束荧光纳米探针的构建及阿尔茨海默病相关miRNA的检测与成像应用研究
  • 批准号:
    22264011
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于诱导性多能干细胞与多参数微纳传感芯片的阿尔茨海默病个性化检测平台
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多肽自组装构建电化学传感平台并用于阿尔茨海默病血液标志物检测的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
  • 批准号:
    10713637
  • 财政年份:
    2023
  • 资助金额:
    $ 144.62万
  • 项目类别:
Artificial Intelligence Applied to Video and Speech for Objectively Evaluating Social Interaction and Depression in Mild Cognitive Impairment
人工智能应用于视频和语音,客观评估轻度认知障碍患者的社交互动和抑郁情况
  • 批准号:
    10810965
  • 财政年份:
    2023
  • 资助金额:
    $ 144.62万
  • 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
  • 批准号:
    10739049
  • 财政年份:
    2023
  • 资助金额:
    $ 144.62万
  • 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
  • 批准号:
    10688715
  • 财政年份:
    2023
  • 资助金额:
    $ 144.62万
  • 项目类别:
Developing an Optical Coherence Tomography (OCT) based handheld intraoral scanner for dentistry
开发基于光学相干断层扫描 (OCT) 的牙科手持式口内扫描仪
  • 批准号:
    10759333
  • 财政年份:
    2023
  • 资助金额:
    $ 144.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了