Role of epithelial cell intrinsic vitamin A metabolism in regulating immune function in the gut
上皮细胞内在维生素A代谢在调节肠道免疫功能中的作用
基本信息
- 批准号:9892004
- 负责人:
- 金额:$ 44.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:All-Trans-RetinolBacteriaCellsCoupledCrohn&aposs diseaseCuesDataDevelopmentDietDiseaseEngineeringEpithelialEpithelial CellsEpitheliumFoodGene ExpressionGenerationsGenesGeneticGenetic PolymorphismGenetic TranscriptionGerm-FreeGnotobioticGoalsHomeostasisHumanImmuneImmune System DiseasesImmune responseImmunityInflammatoryInflammatory Bowel DiseasesInterleukinsIntestinesKnowledgeLaboratoriesLinkMediatingMetabolicMetabolic PathwayMetabolismMethodologyMicrobeMolecularMucosal Immune ResponsesMucosal ImmunityMucous MembraneMusNutrientPhysiologicalPlant RootsPlayPolicePredispositionProcessProductionRegulationRetinoidsRetinol dehydrogenaseRiskRoleSignal TransductionSourceTestingTherapeuticTimeTissuesTretinoinUlcerative ColitisVitamin AWorkabsorptionantimicrobialbacterial communitybasecell typecommensal bacteriacytokineenteric pathogengenetic approachgut bacteriagut microbiotahost-microbe interactionsimmune functioninflammatory disease of the intestineinnovationinsightinterleukin-22intestinal epitheliummicrobialmicrobiotamouse modelnew therapeutic targetnovelnovel strategiesoverexpressionresponsetandem mass spectrometryuptake
项目摘要
PROJECT SUMMARY
Vitamin A or retinol is amongst the most well characterized food-derived nutrients with diverse immune-
modulatory roles. Deficiency in dietary vitamin A has not only been associated with immune dysfunctions in the
gut, but also with several systemic immune disorders. To maintain sufficient levels of vitamin A, the body relies
on the uptake of retinol from the intestinal lumen by intestinal epithelial cells or IECs. After uptake by IECs,
retinol can either be processed for storage or be further metabolized into retinoic acid (RA). Even though IECs
are at the center of Vitamin A metabolism and play a dominant role in controlling the fate of dietary vitamin A,
our knowledge of how IEC intrinsic vitamin A metabolic machinery is regulated is extremely superficial. By
comparing germ-free (GF) and conventional (CV) mice we demonstrate that gut bacteria play a critical role in
modulating retinoic acid (RA) levels and expression of vitamin A metabolic machinery in the intestinal
epithelium. Specifically, we find bacteria differentially regulate expression of retinol dehydrogenase 7 (rdh7), a
key gene involved in conversion of retinol into RA in the intestinal epithelium. By employing genetic mouse
models harboring a deletion in rdh7 in IECs, we establish that IEC intrinsic RA production regulates the levels
of Interleukin IL-22, a key cytokine that controls barrier responses to gut bacteria. Our data demonstrates for
the first time that gut bacteria-dependent RA synthesis is critical for regulating local immune responses.
Current proposal seeks to understand the molecular mechanism by which gut bacteria regulate RA synthesis
and vitamin A metabolic gene rdh7 in IECs (Aim1), establish the role of rdh7 expression in IECs in regulating
RA-signaling in the gut (Aim 2) and determine the role of IEC-intrinsic vitamin A metabolism on host-microbe
homeostasis via modulation of IL-22 levels in the gut (Aim 3). To accomplish these goals, we have developed
innovative genetic approaches that enable us to conditionally delete or over-express rdh7 specifically in IECs.
Further we propose to utilize novel methodologies such as monoassociated and gnotobiotic mouse models to
delineate the bacterial cues that regulate RA generation in the intestinal epithelium. Our experimental
methodology incorporates robust analytical approaches such as tandem mass-spectrometry (LC-MS/MS) that
enables us to accurately determine the flux in vitamin A metabolic pathway in response to discrete bacterial
cues. This work will be significant because it will establish mechanistic links between gut bacteria and
intestinal epithelium intrinsic vitamin A metabolic pathway. Moreover, it will test the feasibility of manipulating
mucosal immunity by bacterial modulation of IEC intrinsic vitamin A metabolism for therapeutic purposes.
项目概要
维生素 A 或视黄醇是特征最明确的食品源性营养素之一,具有多种免疫功能
调节作用。膳食维生素 A 缺乏不仅与免疫功能障碍有关
肠道,但也与一些系统性免疫疾病有关。为了维持足够的维生素 A 水平,身体依靠
肠上皮细胞或 IEC 从肠腔摄取视黄醇的影响。被 IEC 采纳后,
视黄醇可以加工储存或进一步代谢成视黄酸(RA)。尽管 IEC
处于维生素 A 代谢的中心,在控制膳食维生素 A 的命运中发挥主导作用,
我们对 IEC 内在维生素 A 代谢机制如何调节的了解非常肤浅。经过
比较无菌(GF)和传统(CV)小鼠,我们证明肠道细菌在
调节肠道中视黄酸 (RA) 水平和维生素 A 代谢机制的表达
上皮。具体来说,我们发现细菌差异性地调节视黄醇脱氢酶 7 (rdh7) 的表达,视黄醇脱氢酶 7
参与肠上皮中视黄醇转化为 RA 的关键基因。通过使用基因小鼠
IEC 中 rdh7 缺失的模型,我们确定 IEC 内在 RA 生产调节水平
白介素 IL-22 是一种控制肠道细菌屏障反应的关键细胞因子。我们的数据表明
肠道细菌依赖性 RA 合成首次对调节局部免疫反应至关重要。
目前的提案旨在了解肠道细菌调节 RA 合成的分子机制
和IECs中维生素A代谢基因rdh7 (Aim1),建立了IECs中rdh7表达的调节作用
肠道中的 RA 信号传导(目标 2)并确定 IEC 内在维生素 A 代谢对宿主微生物的作用
通过调节肠道内 IL-22 水平实现体内平衡(目标 3)。为了实现这些目标,我们开发了
创新的遗传方法使我们能够有条件地删除或过度表达 rdh7,特别是在 IEC 中。
此外,我们建议利用新的方法,例如单相关和无菌小鼠模型来
描绘了调节肠上皮中 RA 生成的细菌信号。我们的实验
方法结合了串联质谱 (LC-MS/MS) 等强大的分析方法,
使我们能够准确确定维生素 A 代谢途径中响应离散细菌的通量
提示。这项工作意义重大,因为它将建立肠道细菌和肠道细菌之间的机制联系。
肠上皮内在维生素A代谢途径。此外,还将测试操纵的可行性
通过细菌调节 IEC 内在维生素 A 代谢来实现粘膜免疫,以达到治疗目的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shipra Vaishnava其他文献
Shipra Vaishnava的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shipra Vaishnava', 18)}}的其他基金
Vitamin A metabolizing activity of the gut microbiome.
肠道微生物组的维生素 A 代谢活性。
- 批准号:
10628029 - 财政年份:2022
- 资助金额:
$ 44.85万 - 项目类别:
Vitamin A metabolizing activity of the gut microbiome.
肠道微生物组的维生素 A 代谢活性。
- 批准号:
10539433 - 财政年份:2022
- 资助金额:
$ 44.85万 - 项目类别:
Role of epithelial cell intrinsic vitamin A metabolism in regulating immune function in the gut
上皮细胞内在维生素A代谢在调节肠道免疫功能中的作用
- 批准号:
10377935 - 财政年份:2018
- 资助金额:
$ 44.85万 - 项目类别:
相似国自然基金
MicroRNA-23a/HMGN2通过染色质重塑调控中性粒细胞抗细菌免疫的作用机制及其临床检测价值研究
- 批准号:82302630
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
转录因子DevH协调鱼腥蓝细菌异形胞分化和细胞分裂的机制研究
- 批准号:32300039
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
基于工程化细菌载体的CAR-巨噬细胞体内原位改造策略及实体瘤免疫治疗研究
- 批准号:82372119
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
全局转录扰动耦合单细胞拉曼筛选驱动蓝细菌耐盐能力优化及功能机制研究
- 批准号:32300058
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
m6A甲基化介导的肠道上皮细胞焦亡在仔猪抗细菌感染中的作用及机制研究
- 批准号:32372890
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The mechanism of flaviviral suppression of vitamin A metabolism
黄病毒抑制维生素A代谢的机制
- 批准号:
10711672 - 财政年份:2023
- 资助金额:
$ 44.85万 - 项目类别:
Role of epithelial cell intrinsic vitamin A metabolism in regulating immune function in the gut
上皮细胞内在维生素A代谢在调节肠道免疫功能中的作用
- 批准号:
10377935 - 财政年份:2018
- 资助金额:
$ 44.85万 - 项目类别:
Impaired ability of aged human dendritic cells to maintain mucosal tolerance
衰老的人类树突状细胞维持粘膜耐受性的能力受损
- 批准号:
8694995 - 财政年份:2014
- 资助金额:
$ 44.85万 - 项目类别:
Impaired ability of aged human dendritic cells to maintain mucosal tolerance
衰老的人类树突状细胞维持粘膜耐受性的能力受损
- 批准号:
8927521 - 财政年份:2014
- 资助金额:
$ 44.85万 - 项目类别:
High-resolution functional imaging of the retina
视网膜的高分辨率功能成像
- 批准号:
9566002 - 财政年份:2012
- 资助金额:
$ 44.85万 - 项目类别: