Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
基本信息
- 批准号:9512766
- 负责人:
- 金额:$ 66.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-07 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:Applications GrantsAreaCellsClinicalDataData AnalysesDetectionDevelopmentDevice DesignsDevicesDiagnosticDiagnostic radiologic examinationEducational workshopElectrodesElectronicsFundingFutureGasesGlassGoalsImageIonsJointsMedicalMetalsMethodsModelingModernizationMonitorMonte Carlo MethodNoble GasesPerformancePhasePlasmaPropertyProtonsRadiationRadiation therapyReaction TimeRefractoryReportingRequest for ApplicationsResolutionSafetyScanningSeriesSiliconSmall Business Innovation Research GrantSomatropinSystemTechnologyTestingThickThinnessTreatment EfficacyVariantbasecancer therapyclinical applicationcommercializationcostdesigndetectordigitalimaging systemimprovedmeetingsmodels and simulationnovelparticleparticle beamparticle detectorparticle therapyprogramsproton beamprototypepublic health relevanceresearch and developmentresponsescale upsensorsensor technologysimulationsuccesstechnology developmenttreatment program
项目摘要
DESCRIPTION (provided by applicant): A joint DOE-NCI workshop on ion beam therapy (January 2013, Bethesda, MD) identified an ambitious set of technology developments needed to support a world-class treatment program for ion beam therapy. One important requirement is the ability to provide detectors that afford single-particle registration at high data rates with hgh degree of uniformity and minimal interference with the particle beam. This would allow performing proton or ion CT prior to treatment and 2D proton/ion radiography during treatment for integrated range verification, along with beam diagnostics that have minimal interference with the primary beam. Current silicon detectors employed in first developments of proton imaging systems have major limitations in terms of maximum available detector size. Limitations also exist for currently used beam monitoring detectors that are not suitable for very fast response times at high beam intensities required for future clinical applications of particle beam scanning. We propose to develop a novel detector, the plasma panel sensor (PPS), that has the potential to remove all the barriers of existing detectors and should therefore allow particle beam radiation therapy to realize its fullest potential to be used in future clinical particle beam
therapy centers. Fundamentally the proposed detectors should be inherently uniform and of low mass with fast response time. During Phase I we were successful manufacturing ultrathin-PPS glass substrates (i.e., 0.30, 0.20 and 0.026 mm thickness) with electrode pitches of 2.54 mm and 0.35 mm, corresponding to theoretical spatial resolutions of ~ 0.73 mm and 0.10 mm, respectively, as demonstrated with Geant4 Monte Carlo simulations. Sub-millimeter image resolution thus seems eminently achievable, and when combined with potentially high particle detection efficiencies could make these detectors the technology of choice for both imaging and beam monitoring sensors in the particle therapy treatment room. In this 36-month Phase II SBIR we propose to: (1) fabricate and test on a clinical beam line a series of progressively larger and higher resolution, ultrathin-PPS devices with 2D readout; (2) develop Geant4 Monte Carlo simulation models of the detector prototypes to assist in data analysis, device design refinement, and performance optimization; and (3) demonstrate that the ultrathin-PPS devices will meet the clinical requirements as summarized in our Phase-I Final Report. Meeting the target objectives of this SBIR Phase II will enable Integrated Sensors to generate the Phase III funds to produce a universal detector system that will improve both treatment efficacy and the safety of particle beam therapy with protons and ions.
描述(由申请人提供):DOE-NCI 离子束治疗联合研讨会(2013 年 1 月,马里兰州贝塞斯达)确定了支持世界一流离子束治疗计划所需的一系列雄心勃勃的技术开发。能够提供能够以高数据速率进行单粒子配准、高度均匀性和对粒子束干扰最小的探测器,这将允许在治疗和 2D 之前执行质子或离子 CT。质子/离子射线照相在治疗期间进行综合范围验证,以及对主束干扰最小的当前硅探测器在最大可用探测器尺寸方面也存在限制。目前使用的光束监测探测器不适合未来粒子束扫描临床应用所需的高光束强度下的快速响应时间,我们建议开发一种新型探测器,即等离子面板传感器(PPS),它有可能消除这种情况。现有探测器的所有障碍和因此,粒子束放射治疗应该能够充分发挥其在未来临床粒子束中的应用潜力
从根本上来说,所提出的探测器应该是本质上均匀且质量轻且响应时间快的,在第一阶段,我们成功制造了电极间距为 2.54 毫米的超薄 PPS 玻璃基板(即 0.30、0.20 和 0.026 毫米厚度)。 0.35 毫米,分别对应于 ~ 0.73 毫米和 0.10 毫米的理论空间分辨率,如 Geant4 Monte 所示因此,亚毫米图像分辨率似乎完全可以实现,并且与潜在的高粒子检测效率相结合,可以使这些探测器成为粒子治疗室中成像和光束监测传感器的首选技术。 II SBIR 我们建议:(1) 在临床光束线上制造和测试一系列逐渐更大、分辨率更高、具有 2D 读数的超薄 PPS 设备;(2) 开发 Geant4 Monte探测器原型的 Carlo 仿真模型可协助数据分析、设备设计改进和性能优化;(3) 证明超薄 PPS 设备将满足我们的第一阶段最终报告中总结的临床要求。 SBIR 第二阶段的目标将使 Integrated Sensors 能够筹集第三阶段资金,以生产通用探测器系统,从而提高质子和离子粒子束治疗的治疗效果和安全性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter S Friedman其他文献
Peter S Friedman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter S Friedman', 18)}}的其他基金
Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
- 批准号:
10667648 - 财政年份:2021
- 资助金额:
$ 66.14万 - 项目类别:
Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
- 批准号:
10489828 - 财政年份:2021
- 资助金额:
$ 66.14万 - 项目类别:
Ultrafast and Precise External Beam Monitor for FLASH and Other Advanced Radiation Therapy Modalities
用于 FLASH 和其他先进放射治疗方式的超快且精确的外部光束监视器
- 批准号:
10324507 - 财政年份:2021
- 资助金额:
$ 66.14万 - 项目类别:
Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
- 批准号:
8648242 - 财政年份:2014
- 资助金额:
$ 66.14万 - 项目类别:
Large-Area Plasma Panel Detectors for Particle Beam Radiation Therapy
用于粒子束放射治疗的大面积等离子体面板探测器
- 批准号:
9137921 - 财政年份:2014
- 资助金额:
$ 66.14万 - 项目类别:
相似国自然基金
基于“免疫-血管-半月板再生”机制构建负泊松比和结构/细胞双重梯度仿生不同区域的组织工程半月板
- 批准号:82372490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
“软骨损伤区域靶向性干细胞支架”的研发在部分软骨缺损治疗中的应用研究
- 批准号:82302776
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道区域化代谢物磷酸乙醇胺调控B细胞抗体产生的分子机制研究
- 批准号:32300741
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LCN2介导反应性星形胶质细胞极化表型变化参与区域性动脉内低温治疗缺血性卒中的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Recruitment of Cerebellar Circuits with Balance Training for Cognitive Rehabilitation in a Mouse Model of Mild Traumatic Brain Injury
在轻度创伤性脑损伤小鼠模型中通过平衡训练募集小脑回路进行认知康复
- 批准号:
10753349 - 财政年份:2023
- 资助金额:
$ 66.14万 - 项目类别:
Heme-mediated Mitochondrial Injury, Senescence, Acute Kidney Injury and Chronic Kidney Disease
血红素介导的线粒体损伤、衰老、急性肾损伤和慢性肾病
- 批准号:
10656648 - 财政年份:2023
- 资助金额:
$ 66.14万 - 项目类别:
Defining single-channel paracellular (tight junction) conductances using nanotechnology
使用纳米技术定义单通道旁细胞(紧密连接)电导
- 批准号:
10593421 - 财政年份:2023
- 资助金额:
$ 66.14万 - 项目类别: