Computational and circuit mechanisms underlying motor control
电机控制的计算和电路机制
基本信息
- 批准号:9568037
- 负责人:
- 金额:$ 297.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-25 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyAreaBRAIN initiativeBackBehaviorBehavioralBrainCorpus striatum structureDataData ScienceExtensorFlexorImageInterneuronsKnowledgeLogicMapsMeasuresModelingMotorMotor CortexMovementMuscleNervous system structureNeuronsNeurosciencesOutputPatternPopulationPrimatesResource SharingRodentRoleSpinalSpinal CordStructureSystemTechnologyTestingThalamic structureTimeUpdatearmbasebrain behaviorcell typecomputerized toolsdata sharingexperimental studyinstrumentationmembermotor controlmultidisciplinaryneuroregulationnew technologynovel strategiesoptogeneticspredictive modelingprogramsrelating to nervous system
项目摘要
Understanding the mechanisms that the nervous system uses to control movement is critical for
understanding brain and behavior, and one of the fundamental questions in neuroscience. The
control of movement emerges from the activity of different motor control centers, that converge onto
output systems, mostly located in the spinal cord. While the spinal circuits that underlie different
aspects of motor control have been relatively well characterized, the way by which these circuits are
coordinated by supraspinal motor control centers remains elusive. In this project, we aim to
understand the functional and computational logic of connectivity between a motor control centers,
the motor cortex, and the spinal cord and muscle. We will anatomically and functionally characterize
the role of projection-specific populations of corticospinal neurons during particular modes of motor
control. Because even the simplest motor program requires the activation of many neuronal
populations across multiple brain areas, we will also investigate the contribution of other cortical and
subcortical areas to the output of the brain to the spinal cord, and to muscle activity. This
understanding requires It also requires extracting the information that is carried between brain areas
and neuronal cell types, and understanding the computations that are operated in the circuits in order
to achieve specific patterns of muscle activation. We will
extract computational principles governing
the relation between brain activity and muscle activity that are conserved between rodents and
, and will construct predictive models of . In order
to achieve a mechanistic understanding of the brain circuits underlying motor control, we will
dissect the contributions of activity in specific neural populations using closed-loop optogenetic
manipulations. The level of understanding that we are seeking requires a dynamic back and forth
between anatomical and functional mapping experiments, computational and conceptual models,
and causal testing of predictions. We put together a a multidisciplinary team of PIs working in a tight
network, sharing the latest technologies to measure and manipulate the brain through an Advanced
Imaging and Instrumentation core, creating and refining circuit models based on data that generate
testable predictions, and establishing real-time knowledge exchange between team members
through a Data Science Core. Our U19BCP Motor Control team proposes a comprehensive and
ambitious project to establish the computational and circuit mechanisms underlying classical modes
of motor control based on cell-type specific connectivity between brain and spinal cord, novel
technology to measure and manipulate functionally and genetically-defined neural populations, and
state-of-the-art computational tools.
primates
multi-area dynamics during motor control
了解神经系统用于控制运动的机制对于
了解大脑和行为,是神经科学的基本问题之一。这
运动的控制来自不同运动控制中心的活动,这些中心汇聚到
输出系统,大部分位于脊髓。虽然不同的脊髓回路
电机控制的各个方面已经得到了相对较好的表征,这些电路的方式
由脊髓上运动控制中心协调的机制仍然难以捉摸。在这个项目中,我们的目标是
了解电机控制中心之间连接的功能和计算逻辑,
运动皮层、脊髓和肌肉。我们将从解剖学和功能上表征
皮质脊髓神经元的投射特异性群体在特定运动模式中的作用
控制。因为即使是最简单的运动程序也需要激活许多神经元
跨多个大脑区域的人群,我们还将研究其他皮质和大脑区域的贡献
皮质下区域负责大脑向脊髓的输出以及肌肉活动。这
理解需要 还需要提取大脑区域之间携带的信息
和神经元细胞类型,并理解电路中按顺序运行的计算
实现特定的肌肉激活模式。我们将
提取控制的计算原理
啮齿动物和肌肉活动之间保守的大脑活动和肌肉活动之间的关系
,并将构建 的预测模型。为了
为了实现对运动控制背后的大脑回路的机械理解,我们将
使用闭环光遗传学剖析特定神经群体活动的贡献
操纵。我们所寻求的理解水平需要动态的来回
解剖学和功能映射实验、计算模型和概念模型之间,
以及预测的因果检验。我们组建了一支由 PI 组成的多学科团队,紧密合作
网络,分享通过先进的测量和操纵大脑的最新技术
成像和仪器核心,根据生成的数据创建和完善电路模型
可测试的预测,并在团队成员之间建立实时知识交流
通过数据科学核心。我们的 U19BCP 电机控制团队提出了全面且
建立经典模式下的计算和电路机制的雄心勃勃的项目
基于大脑和脊髓之间细胞类型特异性连接的运动控制,新颖
测量和操纵功能和基因定义的神经群体的技术,以及
最先进的计算工具。
灵长类动物
电机控制期间的多区域动态
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rui M. Costa其他文献
Rui M. Costa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rui M. Costa', 18)}}的其他基金
2020 Basal Ganglia Gordon Research Conference and Gordon Research Seminar
2020基底节戈登研究大会暨戈登研究研讨会
- 批准号:
9912902 - 财政年份:2019
- 资助金额:
$ 297.63万 - 项目类别:
Computational and circuit mechanisms underlying motor control
电机控制的计算和电路机制
- 批准号:
9983178 - 财政年份:2017
- 资助金额:
$ 297.63万 - 项目类别:
Computational and circuit mechanisms underlying motor control
电机控制的计算和电路机制
- 批准号:
9444169 - 财政年份:2017
- 资助金额:
$ 297.63万 - 项目类别:
Computational and circuit mechanisms underlying motor control
电机控制的计算和电路机制
- 批准号:
10224727 - 财政年份:2017
- 资助金额:
$ 297.63万 - 项目类别:
Dissecting the contributions of activity in specific neural populations to motor control using closed-loop optogenetic manipulations
使用闭环光遗传学操作剖析特定神经群体的活动对运动控制的贡献
- 批准号:
10224735 - 财政年份:2017
- 资助金额:
$ 297.63万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
Shape-based personalized AT(N) imaging markers of Alzheimer's disease
基于形状的个性化阿尔茨海默病 AT(N) 成像标记
- 批准号:
10667903 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别:
BRAIN CONNECTS: Synaptic resolution whole-brain circuit mapping of molecularly defined cell types using a barcoded rabies virus
大脑连接:使用条形码狂犬病病毒对分子定义的细胞类型进行突触分辨率全脑电路图谱
- 批准号:
10672786 - 财政年份:2023
- 资助金额:
$ 297.63万 - 项目类别: